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This research explored the understanding that novice computer science 

students have of mathematical logic. Because concepts of logic are at the heart of 

many areas of computer science, it was hypothesized that a solid understanding of 

logic would help students grasp basic computer science concepts more quickly 

and would better prepare them for advanced topics such as formal verification of 

program correctness. This exploratory study lays the groundwork for further 

investigation of this hypothesis.

Data for the study were the publicly available versions of the Advanced 

Placement Examination in Computer Science (APCS examination) and files 

containing anonymous individual responses of students who took these
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examinations. A content analysis procedure was developed to provide reliable 

and valid classification of multiple-choice items from the APCS examinations 

based on the relationship between concepts covered in each item and the concepts 

of logic. The concepts in the computer science subdomain of logic were clarified 

by means of a taxonomy developed for use in this study.

Thirty-eight experts in computer science education were judges in the 

content analysis of the multiple-choice items. The judges’ ratings provided 

criteria for grouping items into strongly related and not strongly related 

partitions. In general, the mean proportion of student respondents that correctly 

answered the items in a partition was lower for the strongly related than for the 

not strongly related partition, with a smaller standard deviation. The difficulty 

distributions for the two partitions were shown to be non-homogeneous (p <  .002), 

with the difficulty distribution for the strongly related partition skewed more 

towards the “very difficult” end of the distribution.

The results of this study suggest that novice computer science students 

experience more difficulty with concepts involving mathematical logic than they 

do, in general, with other concepts in computer science. This indicates a need to 

improve the way in which novice computer science students learn the concepts of 

logic. In particular, pre-college preparation in mathematical logic and the content 

of discrete mathematics courses taken by computer science students need to be 

scrutinized.
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Chapter 1 Introduction

This research explored novice computer science students’ understanding 

of mathematical logic (simply referred to as logic in this thesis). Logic restricted 

to two values is fundamental to many areas of computer science. Because logic 

pervades the field, the investigator hypothesized that a solid understanding of 

logic can help students grasp basic computing skills more quickly and can also 

prepare them to be more successful when studying advanced topics such as formal 

verification of program correctness. The findings and conclusions in this study 

establish the baseline for research investigating this hypothesis.

l . i  Background

The inspiration for this research arose through the author’s experience as a 

teaching assistant in an undergraduate course covering topics in discrete 

mathematics and formal verification of computer programs. Each semester, many 

students demonstrated a predictable set of misconceptions about and partial 

understandings of logic concepts. Because logic is the foundation for formal 

verification, these misunderstandings tended to sabotage students’ ability to grasp 

the more advanced concepts.

The datatype boolean encompasses a fundamental subset of concepts in 

logic that belong to the requisite repertoire of most computer scientists. 

Essentially every modem programming language includes the notion of a boolean 

datatype and conditional control structures. For example, alternative statements 

(such as i f - th e n -e l s e )  and repetitive statements (such as w h i le )  depend upon

1
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a boolean expression that controls which part(s) of the structure will be executed 

and how often. Analogous control structures are used in creating algorithms and 

specifications.

There is an intricate relationship between the concepts of classic 

mathematics and the datatypes that have been included in programming 

languages. Because booleans and integers are among the fundamental building 

blocks o f mathematics, they are included as simple datatypes in most 

programming languages. Moreover, these simple types are available on 

computers as basic, built-in datatypes complete with their operations. In the 

classic textbook Algorithms + Data Structures = Programs, Wirth (1976) 

explained: “Standard primitive types are those types that are available on most 

computers as built-in features. They include the whole numbers, the logical truth 

values, and a set of printable characters" (p. 8). In contrast, while other entities 

such as complex numbers and infinite sets are fundamental mathematical 

concepts, they are not included as built-in types in programming languages 

because there is no effective counterpart available on computers (N. Wirth, 

personal correspondence, January 21,1994).

For many students, working with booleans while learning to program is 

their initial formal exposure to the concepts of logic. This research focused on 

datatype boolean as representative of the wider subdomain of logic.
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1.2 Purpose  o f  th e  S tudy

This study investigated the question: Do novice computer science 

students generally have more difficulty with the concepts of logic than they have 

with other areas in computer science? The goals of this study were: (a) to 

identify and define clearly concepts in the subdomain of logic; (b) to identify a 

method by which relevant material could be isolated from a larger source; and (c) 

to provide objective evidence as to whether novice computer science students had 

more difficulty understanding the concepts in this subdomain than they had with 

the concepts in other novice computer science areas.

1.3 Significance  o f  th e  S tudy

Many in the computing community have expressed the view that logic is

an essential topic in the field (e.g., Galton, 1992; Gibbs & Tucker, 1986;

Sperschneider & Antoniou, 1991). There has also been concern that the

introduction of logic to computer science students has been and is being neglected

(e.g., Dijkstra, 1989; Gries, 1990). In their article “A review of several programs

for the teaching of logic”, Goldson, Reeves and Bomat (1993) stated:

There has been an explosion of interest in the use of logic in 
computer science in recent years. This is in part due to theoretical 
developments within academic computer science and in part due to 
the recent popularity of Formal Methods amongst software 
engineers. There is now a widespread and growing recognition that 
formal techniques are central to the subject and that a good grasp 
of them is essential for a practising computer scientist, (p. 373)

In his paper “The central role of mathematical logic in computer science”, Myers

(1990) provided an extensive list of topics that demonstrate
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... the importance of logic to many core areas in computer science:
• “theoretical” computer science: automata, formal languages, 

computability, complexity, recursive function theory
• artificial intelligence: deduction systems, expert systems, 

cognitive science, formalisms, automated proofs, natural 
language processing

• programming languages and data structures: logic programming 
(PROLOG is but one such language), resolution, functional 
languages, semantics ([axiomatic], denotational, procedural, 
realizability), language design, computational completeness, 
data abstraction/operations, type theory, object-oriented 
approaches, parallel processing (optimality and equivalence to 
sequential algorithms)

• database systems: alternatives for knowledge representation and 
data models (relational, entity-relationship, etc.), query 
processing languages, isolating effects of local inconsistencies, 
deductive databases and expert systems, dynamic/temporal 
modeling and temporal logics (for the dimension of time in 
databases), knowledge-based systems with incomplete and 
tentative information requiring modal and fuzzy reasoning, 
natural language interfaces

• software engineering: program verification, including testing 
(path manipulation) and correctness, formal specifications and 
program design, executable specifications

• hardware: circuit design/optimization, hardware design 
languages, processor verification, correctness of [operating 
system] kernel, language implementation on given processors

• philosophical foundation for computer science: profound 
correspondences between reasoning and computation, formal 
systems, constructivity as a basis for computer science 
influencing language design, semantics, etc. (computer science 
as “applied constructivity”) (pp. 23-24)

Myers warned that this listing is necessarily partial and that the items in 

the listing are not mutually exclusive. While many of the topics in Myers’ list, for 

example type theory and constructivity, are more advanced than would be covered 

in the typical undergraduate program, the full list of topics covers much of the 

breadth and depth of the curriculum guidelines for computer science (Tucker, 

1990). Because logic is fundamental to so much of the rest of computer science,
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improving novice students’ skills and understanding in this subdomain can affect 

their potential for success within the field as a whole.

1.4 Nature  o f  t h e  Study

In this study, the concepts in the computer science subdomain of logic 

were described by means of a taxonomy. The taxonomy, in the form of a broad 

outline of the concepts in the subdomain of logic, served as the cornerstone of the 

rest of the research. By defining the set of concepts under study, the taxonomy 

served to focus the research effort.

The data for this research were based on test items and statistics from 

several publicly available computer science examinations. The multiple-choice 

items on these examinations were studied to identify those items that were 

strongly related to logic as well as those items that bore little or no relationship to 

logic. In order to accomplish this in a valid and reliable manner, all of the items 

from the examinations were classified using the research methodology content 

analysis. Experts in computer science education followed a well-defined 

procedure to rate each item for how strongly its content was related to the 

subdomain of logic. The results of the rating process provided the criteria for 

assigning items to partitions on the basis of whether or not they were strongly 

related to the subdomain. Comparative analysis of individual performance data 

for these items was carried out based on the composition of the partitions.
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1.5 Research  Q uestions

This study sought to provide objective evidence as to whether novice 

computer science students have more difficulty understanding concepts in the 

subdomain of logic than in understanding other novice computer science 

concepts. The first research question that was investigated was:

(a) Can a procedure be developed for reliable and valid classification of 

content-area test items according to their degree of relationship to a pre­

defined set of logic concepts?

Given a positive answer to research question (a), the test items under 

consideration would be divided into sets of items according to the outcome of the 

classification process. The following research questions could then be 

considered:

(b) In considering student performance on the test items, was the distribution 

of performance different for items whose content was strongly related to 

logic than for items whose content was not strongly related to logic?

(c) Was there a relationship between individual performance on the set of 

items whose content was strongly related to logic and individual 

performance on the set of items whose content was not strongly related to 

logic?

1.6 O verview  o f  R emaining  Chapters

Chapter 2 reviews related research. Mathematical logic is surveyed from a 

historical point of view, laying the groundwork for considering the role of logic in 

computer science. Curricular efforts that relate to logic as a subdomain of
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computer science are reviewed and the use of logic in several areas of computer 

science is discussed. The role that logic plays in several psychological theories is 

described, followed by an overview of research that has investigated the 

connection between ability to use mathematical logic and success in courses in the 

natural sciences. Chapter 2 concludes with a brief background on the procedures 

of content analysis, including design of the procedures, gathering of the data, 

issues of reliability and validity, and a survey of ways in which content analysis 

has been used in recent research.

Chapter 3 describes the research design, including the process used in 

designing a taxonomy of concepts, motivation for choosing the examinations that 

were used as the source of data, the methodology of content analysis followed in 

analyzing the examination items, and the algorithms used in partitioning the 

examination items into strongly related and not strongly related groupings. The 

completed partitioning of items provided the basis for addressing the research 

questions posed in Chapter 1. Null hypotheses are developed and the statistical 

analyses to be used in considering these hypotheses is described.

Chapter 4 presents the findings of the study. The composition of the 

examinations used as data for the content analysis procedure is described and the 

overall performance of the large samples of students who took these examinations 

is given. The final outcome of the content analysis procedure is detailed, 

including the results of partitioning the items into strongly related and not 

strongly related groupings as well as reliability results for the item analysis 

procedure. The study showed that the items that were strongly related to logic 

tended to be more difficult than the items that were not strongly related. The
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variability of individual responses to the strongly related items was shown to be 

only weakly explained by the variability in the responses to the not strongly 

related items. In numerical terms, on the scale 0.0 (no one answered correctly) to

1.0 (everyone answered correctly), the mean was .05-. 18 lower for strongly 

related items than for not strongly related items, with the standard deviation being 

smaller by .05-19. Finally, it was shown that, with respect to item difficulty, the 

distributions of items in the strongly related and not strongly related partitions 

were not homogeneous (p <  .002).

Chapter 5 discusses the conclusions supported by the research findings, 

the generalizability of the findings, and recommendations for further research on 

this topic. The final section presents implications for computer science education, 

in particular the need for greater attention to pre-college preparation in 

mathematical logic and to the discrete mathematics courses taken by computer 

science students.

A glossary, the last section before the bibliography, defines important 

terms and acronyms. Several appendices are given between Chapter 5 and the 

glossary. The bibliography is the final section of the thesis.
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Chapter 2 Literature Review

Chapter 2 begins with a brief historical perspective on the development of 

mathematical logic. After a discussion of the status of mathematical logic in 

curriculum guidelines in computer science and related fields, the use of 

mathematical logic in the age of computer science is explored from the point of 

view of programming languages and formal methods. Next, the relationship 

between logic and reasoning is considered. Theories about the role of logic and 

reasoning in psychology are discussed, followed by a survey of studies that have 

investigated the relationship between students* ability to correctly interpret 

propositional logic statements and their success in natural science courses. 

Chapter 2 concludes with a discussion of the research technique content analysis 

and a review of its use in recent studies.

2.1 Ma th em a tica l  Lo g ic  —  A H istorical  P erspective

The history of logic is closely related to the history of Western philosophy. 

As a form of systematic and scholarly inquiry, philosophy was used by the ancient 

Greeks (e.g., the pre-Socratics, Plato, and Aristotle) to develop a set of principles 

sufficiently comprehensive to account for their knowledge of both the natural and 

the human world. With time, the Greek thinkers understood that for each science 

there could be a corresponding philosophy of the science. The philosophy of a 

science would examine the fundamental principles of the discipline to see whether 

they were logical, consistent, and true. Eventually, philosophical aspects of 

scientific endeavors were recognized as being distinct from attempts to delineate

9
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reality, leading to the establishment of the various branches of the natural 

sciences, such as astronomy, physics, chemistry, geology, biology, psychology, 

and computer science.1

In the Philosopher’s quest for answers, the basic tools have been logical 

and speculative reasoning. In Western philosophy, the development of logic has 

generally been traced to Aristotle, whose aim was to construct valid arguments 

and, if true premises could be uncovered, true conclusions. As a tool, logic has 

played an important role in both ancient and modem philosophy by clarifying the 

reasoning process, providing standards for recognizing valid reasoning, and 

allowing analysis of basic concepts for consistency.

The relationship between mathematics and philosophy was apparent 

almost from the beginning in ancient Greece. Because mathematics appeared to 

encompass a degree of certainty and rigor exceeding that observed in other 

subjects, some philosophers felt that mathematics was the key to understanding 

reality. Plato, for example, claimed that mathematics provided the “forms” out of 

which everything was made. In contrast, Aristotle maintained that mathematics 

dealt with ideal rather than real objects, so that mathematics could be absolute 

without informing about reality.

Modem logic began to arise during the middle of the 17th century, when 

G. W. Leibnitz theorized about constructing an ideal mathematical language in 

which to state and mathematically solve all philosophical problems (Popkin, 

1993a). One of Leibniz’s ideas was that of an ars magna, a machine able to

1 The primary source for the first three paragraphs of this section is Popkin (1993a). The facts 
presented were reinforced by Church (1956), Hilbert and Ackerman (1950), Lewis and 
Langford (1959), and Popkin (1993b).
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answer arbitrary questions about the world (Sperschneider & Antoniou, 1991). 

His attempts were the first in the history of science to represent logic in the form 

of an algebraic calculus (Stolyar, 1970).

Mathematical logic arose from the desire to establish systematic 

foundations for the practice of mathematics, for explaining the nature of numbers 

and the laws of arithmetic, and for replacing intuition with rigorous proof 

(Cumbee, 1993). The foundational crisis of mathematics in the late 19th and early 

20th centuries greatly accounts for the existence of mathematical logic as a special 

branch of science (Sperschneider & Antoniou, 1991; Stolyar, 1970). Modem 

logic, developed from the 19th century onwards in the work of Boole, de Morgan, 

Frege, Jevons, Peano, Peirce, Schroder, Russell, Whitehead, and others, includes a 

body of proofs and modes of inference within which the work of Aristotle and 

other ancients falls naturally into place, but which in addition contains a 

comprehensive theory of relations. The primary difference between traditional 

logic and modem logic is that the latter is much more inclusive.

At the beginning of the 20th century, attempts were made to describe 

mathematics completely by means of formal systems. One goal was to mechanize 

mathematics; this task came to be known by the name H ilbert’s Programme. 

G&del’s work, published in 1931, proved that this task was totally unrealistic by 

showing that, for every sufficiently rich formal system, a valid assertion could be 

constructed that could not be derived in the formal system. Another fundamental 

finding that showed the unfeasibility of Hilbert’s Programme was the famous 

undecidability result of Turing and Church (Sperschneider & Antoniou, 1991).
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The development of modem logic was made possible through the

systematic use of symbolic notation as a medium for formulating even complex

meanings in simple terms (Hasenjaeger, 1972; Stolyar, 1970). Even Aristotle

used letter symbols in logic; however, since no symbolic language had been

developed for mathematics at that time, his use of symbols was very limited.

Formal logic became symbolic when it acquired its own technical language,

essentially an extension of mathematical symbols (Copi, 1979; Stolyar, 1970).

Alfred North Whitehead, an important contributor to the advance of symbolic

logic, highlighted the significance of this progress in his observation that

... by the aid of symbolism, we can make transitions in reasoning 
almost mechanically by the eye, which otherwise would call into 
play the higher faculties of the brain. (Whitehead, 1911; cited in 
Copi, 1971, p. 7)

The extended use of symbolic procedures made the subject of logic broader in

scope and brought logic into new relationships with other exact sciences, such as

mathematics (Lewis & Langford, 1959). Mathematical logic has also been

referred to as symbolic logic, exact logic, formal logic, logistic, and the algebra of

logic (Hilbert & Ackermann, 1950; Lewis & Langford, 1959).

The following quote from Belnap & Grover (1973) concludes this brief

historical perspective on logic by pointing out its widespread utility and the

breadth of applications to which it is applied:

Logic is many things: a science, an art, a toy, a joy. And 
sometimes a tool. One thing the logician can do is provide useful 
systems, systems which are both widely applicable and efficient: 
set theory has been developed for the mathematician, modal logic 
for the metaphysician, boolean logic for the computer scientist, 
syllogistics for the rhetorician; and the first order functional 
calculus for us all. (p. 17)
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2.2 C urriculum  G uidelines R elated  t o  Lo g ic  in  C om puting

Three distinct sources of curricular guidelines address the issue of which 

topics of mathematical logic should be included in the education of computer 

science students. The first source is the field of computer science. In computer 

science-oriented guidelines, logic is not a major focus but is an integral part of 

many components of the curricular guidelines. The second source of guidelines 

considers logic in the context of the discipline of mathematics. Here, guidelines 

cover concepts of logic, but the agenda is broader than mathematical logic. In the 

context of this study, recommendations for the discrete mathematics course are of 

greatest interest. The third source of guidelines is the mathematical logic 

community. Guidelines from this source focus exclusively on the topics of logic 

that should be taught, when these topics should be covered, and the subsets of 

topics that are important for students in various fields. Throughout this section, 

emphasis is on post-secondary education, with pre-college issues discussed as 

appropriate.

2.2.1 Computer science curriculum guidelines

As academic disciplines go, computer science is a young field. The first 

widely accepted curriculum for academic programs in computer science was 

Curriculum '68 (Atchison, 1968), published by the Association for Computing 

Machinery; many alternatives and revisions have emerged since then.

In 1982, the Mathematical Association of America (MAA) published 

Studies in Computer Science, a book in the series titled Studies in Mathematics
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(Pollack, 1982a). Studies in Computer Science included nine articles that 

provided snapshots of the still-emerging field of computer science. As Pollack 

pointed out in the introduction, “ ... the burgeoning of computer science programs 

cannot be equated with the maturation of computer science” (p. vii). The 

intention of the volume was to explore computer science as a field distinct from 

the various disciplines that used aspects of computing (e.g., numerical analysis). 

The first article, “The development of computer science”, was authored by 

Pollack (1982b). As part of this historical perspective, Pollack explained how the 

very process o f defining academic programs for computer science forced 

recognition of computing as a discipline separate from others such as mathematics 

and engineering. Curriculum '68 in particular acted as a catalyst, providing a 

basis for discussion as well as a developmental model for existing and budding 

computer science degree programs. However, Pollack (1982) explained that 

Curriculum '68

... also had a dichotomizing aspect: Its basically mathematical 
orientation sharpened its contrast with more pragmatic alternatives.
Most computer science educators agreed that the proposed core 
courses included issues crucial to computer science. However, the 
curriculum brought to the surface a strong division over the way in 
which these issues should be viewed. In defining the contents of 
the courses, Curriculum '68 established clearly its alignment with 
more traditional mathematical studies, giving primary emphasis to 
a search for beauty and elegance, (p. 41)

During the decade following the introduction of Curriculum '68, a number 

of alternative curricula appeared, each in response to objections to Curriculum '68. 

According to Pollack (1982), alternative curricula were defined for the areas of 

management information systems, software engineering, biomedical computer 

science, information science, computing center management, computer
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engineering, and applied mathematics (with emphasis on the mathematics of 

computation).

In the mid-1970s, the ACM initiated a new curriculum effort, intended to 

answer the increased demand for professionally-focused computer science 

programs. This culminated in Curriculum '78 (Austing, 1979). Curriculum '78 

was criticized by many for simply reflecting the status quo in computer science 

education, rather than providing a forward-looking model. Berztiss (1987) 

observed that, instead of successfully integrating the theoretical and practical 

developments that occurred between 1968 and 1978, Curriculum '78 stressed the 

practical side of the field and thus lent a vocational spirit to computer science 

education. Ralston and Shaw (1980) pointed out that the mathematics 

components in Curriculum '78 were essentially the same as those in Curriculum 

'68, only weaker: Curriculum '68 required a total of eight mathematics courses, 

while Curriculum '78 required only five. Ralston and Shaw predicted that, 

because the mathematics of central importance to computer science had changed 

drastically during the intervening decade, this would lessen the impact of the 

entire report.

A second professional organization for computer science with a deep 

interest in curricular issues is the Computer Society of the Institute of Electrical 

and Electronic Engineers (IEEE). In 1976 and 1983, the IEEE Computer Society 

published model programs in computer science and engineering (IEEE, 1976, 

1983). These curricula were specified in the form of subject areas rather than 

courses and, for aspects of the curriculum outside of computer science and 

engineering, deferred to the standards of the Accreditation Board for Engineering
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and Technology (ABET). The model program report (IEEE, 1983) described 

discrete mathematics as a subject area of mathematics that is crucial to computer 

science and engineering. The discrete mathematics course was to be a pre- or co­

requisite of all 13 core subject areas except the first, Fundamentals of Computing, 

which had no pre-requisites. The description of the content o f discrete 

mathematics consisted of detailed lists of topics for eight modules, the first of 

which was Introduction to Symbolic Logic. Theoretical concepts listed for this 

module were logical connectives, well-formed formulas, rules of inference, 

induction, proof by contradiction, predicates, and quantifiers; application concepts 

were computer logic and proofs of program correctness. In Shaw’s opinion 

(1985), the IEEE program was strong mathematically but was disappointing 

because of a heavy bias toward hardware and its failure to expose basic 

connections between hardware and software.

An alternative model curriculum, one for a liberal arts degree in computer 

science, was described by Gibbs and Tucker (1986). This effort, carried out under 

the aegis of ACM, was the product of collaboration of computing educators at 

liberal arts colleges who had come to feel that

... the standard set by ‘Curriculum 78’ has become obsolete as a 
guiding light for maintaining contemporary high-quality 
undergraduate degree programs and cannot serve as a basis for 
developing a new degree program in computer science within a 
liberal arts setting, (p. 203)

Given the liberal arts setting, the underlying agenda of the curriculum was to

prepare students for a lifelong career of learning. In their description of the model

curriculum, Gibbs and Tucker reaffirmed the view of computer science as a

coherent body of scientific principles. They stressed the essential role of
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mathematics, “not only in the particular knowledge that is required to understand

computer science, but also in the reasoning skills associated with mathematical

maturity” (p. 207). A discrete mathematics course was recommended as either a

pre- or co-requisite for the second semester computer science course. One

required topic area in the discrete mathematics course was

introduction to logical reasoning, including such topics as truth 
tables and methods of proof; quantifiers should be included and 
proofs by induction should be emphasized; simple diagonalization 
proofs should be presented, (p. 207)

Other topics of mathematics were described and related to the remainder of the

model curriculum. Mathematical topics that the liberal arts model curriculum

included as “particularly relevant to computer science” were additional areas of

discrete mathematics (e.g., recurrence relations, graph theory, matrices, partially

ordered sets, lattices), calculus (e.g., limits, derivatives, max-min problems,

simple integration), and linear algebra (e.g., vectors, matrix manipulation,

eigenvalues, eigenvectors).

While the ACM and the IEEE curricula were widely used, they became

quickly outdated due to the rate at which the computing field was changing. In

1988, a joint committee of the ACM and the IEEE Computer Society was charged

with the task of defining the discipline of computing. The result o f that

committee effort was a document known as the Denning Report (Denning, 1989).

This report became the foundation for an effort to develop computer science

curriculum guidelines suitable for use into the 1990s. A task force with members

from the ACM and the IEEE Computer Society was set up to produce new

guidelines using the Denning Report as a basis. The final report, Computing
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Curricula 1991 (Tucker, 1990), cited influences of the earlier ACM and IEEE 

guidelines as well as of other curricular recommendations produced during the 

previous 25 years.

The principles underlying Computing Curricula 1991 included nine 

subject areas, three key processes used by professionals in the computing field, a 

set of recurring concepts that permeate the topics of computing, and the social 

and professional context of the discipline. These principles provided the basis for 

defining knowledge units, smaller modules that specify the scope of topics that are 

essential for all computing students. Computing Curricula 1991 specifically 

avoided the definition of specific courses, recognizing that the wide variety of 

institutions and types of programs that existed implied a need for flexibility in 

how the subject matter would be mapped to courses. An overview of the subject 

areas, processes, recurring concepts, and knowledge units is given in Appendix A.

The mathematics and science requirements recommended by Computing 

Curricula 1991 are described in Table 2.1. In discussing the vital role of 

mathematics in the computing curriculum, the committee stated “Mathematical 

maturity, as commonly attained through logically rigorous mathematics courses, 

is essential to successful mastery of several fundamental topics in computing" 

(Tucker, 1990, p. 27). At least the equivalent of four or five semester-long 

courses were specified for all computer science students. The discrete 

mathematics recommended for all majors included many concepts of 

mathematical logic, with additional topics of logic to be covered in an optional 

logic or advanced discrete mathematics course.
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Table 2.1 Mathematics Requirements in Computing Curricula 1991

Mathematics recommendec for all computing majors: (minimum of 4 semester-long courses)
subject area topics covered

discrete mathematics • sets
• functions
• elementary propositional and predicate logic
• boolean algebra
• elementary graph theory
• proof techniques (including induction and contradiction)
• combinatorics
• probability
• random numbers

calculus • differential and integral calculus
• sequences and series
• introduction to differential equations

It was recommended that additional mathematics include at least one of the following subjects:
subject area topics covered

probability • discrete and continuous probability
• combinatorics
• elementary statistics

linear algebra
(elementary)

• vectors
• linear transforms
• matrices

advanced discrete 
mathematics

• additional advanced topics in discrete mathematics

mathematical logic • propositional and functional calculi
• completeness
• validity
• proof
• decision problems

The Advanced Placement (AP) program, which offers high school 

students the opportunity to study college-level material, includes computer 

science as a subject area. The AP program, run by the College Board and 

administered by Educational Testing Services (ETS), targets three groups: 

“students who wish to pursue college-level studies while still in secondary school, 

schools that desire to offer these opportunities, and colleges that wish to
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encourage and recognize such achievement” (College Board, 1990, p. i). The 

College Board has defined a topic outline for Advanced Placement in Computer 

Science courses, given in Appendix B. The Advanced Placement Examination in 

Computer Science is administered annually. Students who take the examination 

usually have taken one or more Advanced Placement (AP) courses in computer 

science. The items on each AP examination are designed to cover as closely as 

possible the topics recommended for the corresponding introductory college-level 

course(s). The APCS examination is designed to measure how well students have 

learned the requisite concepts of computer science. Students who do well may be 

granted placement, appropriate credit, or both by colleges and universities that 

participate in the program.

While the APCS program is targeted for college-bound high school 

students, the ACM has developed a model computer science curriculum (Merritt, 

1993) to address the needs of all high school students. The model curriculum, 

which was developed to be consistent with the recommendations in Computing 

Curricula 1991, identified essential concepts in computing that every high school 

student should understand. The report outlines core, recommended, and optional 

topics as the basis for the model; several appendices at the end of the report 

describe a variety of possible implementations of the model. While the report 

made no specific recommendations for coverage of mathematical logic, one 

suggested implementation did address this area. Proulx and W olf (1993) 

presented a set of 12 modules covering the model curriculum topics and, in a 

separate table, showed the relationship between the modules and the discrete 

mathematics topics given in Computing Curricula 1991 (refer to Table 2.1).
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Proulx and Wolf explained that the modules covered all but one of the discrete 

mathematics topics: the topic of proof techniques was excluded because it was 

felt to be inappropriate for high school students.

2.2.2 Recommendations for discrete mathematics

It is generally agreed that students in undergraduate computer science 

programs should have a strong basis in mathematics, although there is no 

consensus as to what constitutes the appropriate mathematical background. In the 

evolution of undergraduate curricula, attempts to recommend which mathematics 

courses should be required, the number of mathematics courses, and when the 

courses should be taken have been the source of much controversy (e.g., Berztiss, 

1987; Dijkstra, 1989; Gries, 1990; Ralston & Shaw, 1980; Saiedian, 1992). A 

central theme in the controversy within the computer science community has been 

the course called discrete mathematics. Among other topics, the discrete 

mathematics course often includes formal logic, the nature of proof, and set 

theory.

In 1989, the Mathematical Association of America (MAA) published a 

report about discrete mathematics at the undergraduate level (Ralston, 1989). 

This report related the experiences of six colleges and universities that were 

supported by the Alfred P. Sloan Foundation under a program to foster "the 

development of a new curriculum for the first two years of undergraduate 

mathematics in which discrete mathematics [would] play a role o f equal 

importance to that of the calculus” (p. 1). The intention of the Sloan program was 

to make recommendations for revision of the first two years of the mathematics
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curriculum for everyone — mathematics majors, physical science and engineering 

majors, social and management science majors as well as computer science 

majors. The recommendations put forward by the MAA Committee on Discrete 

Mathematics in the First Two Years were as follows:

1. Discrete mathematics should be part of the first two years of 
the standard mathematics curriculum at all colleges and 
universities.

2. Discrete mathematics should be taught at the intellectual 
level of calculus.

3. Discrete mathematics courses should be one year courses 
which may be taken independently of the calculus.

4. The primary themes of discrete mathematics courses should 
be the notions of proof, recursion, induction, modeling and 
algorithmic thinking.

5. The topics to be covered are less important than the 
acquisition of mathematical maturity and of skills in using 
abstraction and generalization.

6. Discrete mathematics should be distinguished from finite 
mathematics, which, as it is now most often taught, might be 
characterized as baby linear algebra and some other topics for 
students not in the “hard” sciences.

7. Discrete mathematics should be taught by mathematicians.
8. All students in the sciences and engineering should be 

required to take some discrete mathematics as 
undergraduates. Mathematics majors should be required to 
take at least one course in discrete mathematics.

9. Serious attention should be paid to the teaching of the 
calculus. Integration of discrete methods with the calculus 
and the use of symbolic manipulators should be considered.

10. Secondary schools should introduce many ideas of discrete 
mathematics into the curriculum to help students improve 
their problem-solving skills and prepare them for college 
mathematics. (Siegel, 1989b, p. 91)

With respect to the debate over “calculus vs. discrete mathematics’*,

Ralston and Shaw (1980) have observed that

... although we believe strongly that the values o f a liberal 
education should infuse any undergraduate program, our focus here
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is on the professional needs of the computer scientist, not on the 
general education needs. Thus, it may be true that all educated 
men and women should be familiar with the essence of calculus 
but it does not necessarily follow that computer scientists have a 
significant professional need to know calculus, (p. 70)

The alternatives currently considered most viable are: (1) students should enroll

in discrete mathematics and calculus courses simultaneously, (2) calculus should

be delayed until the sophomore or junior year, at which time a more sophisticated

course could be offered because of earlier training in discrete mathematics

courses, and (3) offer a hybrid of calculus and discrete mathematics topics, with

greater emphasis on problem solving and symbolic reasoning (Ralston, 1989;

Myers, 1990).

At the pre-college level, curricular recommendations for discrete 

mathematics have been issued by the National Council of Teachers of 

Mathematics (NCTM) as part of the Curriculum and Evaluation Standards for 

School Mathematics (Romberg, 1989). This document contains a set of 

individual standards for pre-college (grades K-12) mathematics curricula. One of 

the 14 curriculum standards for high school (grades 9-12) is for discrete 

mathematics. The discrete mathematics standard emphasizes that the topics of 

discrete mathematics would not necessarily constitute a separate course, but 

should instead be integrated throughout the high school curriculum.

Also at the pre-college level, the MAA Committee on Placement 

Examinations has attempted to identify skills needed by students taking discrete 

mathematics. Siegel (1989b) explained that the committee’s intention was not 

necessarily to define an Advanced Placement examination for discrete
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mathematics but rather to "... help to explain what might be the appropriate 

preparation for a successful experience in such a course” (p. 97).

2.2.3 Guidelines for logic education

Yet another view of the topics of logic that should be included in the 

educational experience of computing students comes from educators specifically 

interested in mathematical logic. The Association for Symbolic Logic (ASL), an 

international organization that has been devoted to the study of logic since 1936, 

formed an Ad Hoc Committee on Education in Logic in summer 1991. The 

committee was charged with making specific recommendations about logic 

education for both pre-college and undergraduate programs. Graduate programs 

were excluded from consideration because of the diversity o f faculty research 

interests and of institutional traditions at the graduate level.

The committee’s brief final report (ASL, in press) presents a general view 

of concepts in the field of logic with recommendations for the stages at which 

various concepts should be introduced. For pre-college students, the stated goal is 

to promote and facilitate logical and analytical reasoning at an early age. 

Nonspecific strategies are given for different age levels: informal incorporation 

of “good” and “bad” arguments for children aged 5-9; heuristic strategies for 

(logical) problem solving for children aged 10-13; and the explicit use of logical 

notions and techniques for students aged 14-17, probably as part o f their 

mathematics courses. These recommendations can be contrasted with the NCTM 

Standards for School Mathematics (Romberg, 1989). While the NCTM Standards 

do not address mathematical or symbolic logic as a separate topic, key concepts of
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logic are integral to several of the topics. For example, skills such as problem 

solving, symbolic manipulation, and reasoning are strongly related to three 

themes of the NCTM Standards: mathematics as problem solving, mathematics 

as communication, and mathematics as reasoning.

At the beginning post-secondary level, the ASL Guidelines recommend 

that all students should be encouraged to take at least one introductory course that 

teaches the basic notions of logic, including informal strategies, propositional 

calculus, and predicate calculus. The committee noted that such a course could be 

taught as a general service course in the philosophy department or as a more 

technical course in a mathematics or computer science department. At the 

advanced post-secondary level (e.g., at four-year institutions), the ASL Guidelines 

advocate an additional set of core topics that are relevant and applicable to many 

areas of science and scholarship.

The ASL Guidelines exclude specific course models because of the wide 

variety of academic programs and institutions to which the guidelines were 

addressed. The ASL report does not relate its recommendations to guidelines in 

related fields, such as Computing Curricula 1991 (Tucker, 1990) or the MAA 

recommendations for discrete mathematics (Ralston, 1989). The vagueness of the 

recommendations and the lack of specific connections to curriculum guidelines in 

mathematics and computer science reduce the potential impact o f the ASL 

Guidelines for Logic Education.
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2.3 M athem atical  Lo g ic  in  th e  Ag e  o f  C om puter  S cience

Mathematical logic is pervasive in the field o f computer science. 

Examples of the breadth and depth of the role of logic have been given by Galton 

(1992), Gries and Schneider (1993a), Myers (1990), and Sperschneider and 

Antoniou (1991), among others.

Because the uses o f logic are so varied and opinions on the role of 

mathematical logic in computer science so diverse, this survey has been restricted 

to two areas that are closely related to the concepts considered in this study: 

programming languages and formal methods for proving program correctness.

2.3.1 Mathematical logic in programming languages

Use and understanding of mathematical logic in programming languages 

has centered on datatype boolean. Boolean is a primitive and important datatype 

in most computer programming languages.

A broad set of datatypes was defined in the Language-Independent 

Datatype (LID) project, which was carried out under the aegis of the International 

Standards Organisation (ISO, 1994). In the LID project, each datatype was 

defined independent of any particular programming language or implementation. 

A goal for the standard was to encourage commonality among and facilitate 

interchange of datatype notions between different programming languages and 

language-related entities. In the LID standard, each datatype is defined by a basic 

set of properties. The ultimate goal was to provide a single common reference 

model for all standards that use the concept “datatype”.
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The formal LID definition of primitive datatype boolean is given in Figure 

2.1. The definition gives three properties of datatype boolean: it is non-numeric, 

unordered, and discrete. A related datatype defined in the LID standard is 

datatype bit, defined as Modulo(2), the two-valued subtype of integer. Although 

datatypes boolean and bit resemble one another in many ways, they are distinct 

datatypes with different (if analogous) operations. Dijkstra and Feijen (1988) 

have admonished “The old-fashioned habit, still found in electrical engineering, 

of identifying the values true and false by the integers 1 and 0 respectively must 

not be imitated: it only leads to confusion” (p. 43). The separate definitions of 

boolean and bit in the LID standard help emphasize this distinction.

Datatype boolean has often been relegated to “second-class citizenship" in 

programming languages. Programmers, professionals as well as students, have 

tended to use datatype boolean differently than they have used, for example, 

datatype integer. For an object to be a first class citizen in a given language, it 

must be usable without restriction in whatever ways are appropriate for the 

language (D. Naumann, personal communication, November 24,1993). First, the 

datatype should have as its basis a well-defined set of values. For example, 

datatype integer has as its basis the set of values {... -2 , - 1 ,0 ,1 ,2 , . . .} ;  datatype 

boolean is based on the set of values { true, false }. Second, it must be possible 

both to evaluate expressions whose result is of that datatype and to assign the 

result of expression evaluation to variables of that type. Figure 2.2 gives two 

examples from the literature that contrast different ways of evaluating a boolean 

expression and assigning the result to a boolean variable. The third requirement
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Boolean
Description:

Syntax:

Parameters:

Values:

Properties:

Operations:

Boolean is the mathematical datatype associated with two-valued 
logic.

Boolean = "boolean” 
boolean-value = “true” I “false”

none

“true”, “false”, such that true ^  false 

non-numeric, unordered, discrete 

Equal, Not, And, Or

Equal (x, >: boolean): boolean is defined by tabulation:
X y Equal (x,y)

true true true
true false false
false true false
false false true

Not (x: boolean): boolean is defined by tabulation:
X Not (x)

true false
false true

Or (x, y: boolean): boolean is defined by tabulation:
x y O r (x, y)

true true true
true false true
false true true
false false false

And (x,y: boolean) = Not (Or (Not(x), Not(y)))

Note: Either And or Or is sufficient to characterize the boolean datatype, and given 
one, the other can be defined in terms of it. They are both defined here because both of 

- them are used in the definitions of operations on other datatypes.

From: Information technology — Language-independent datatypes, 
International Organization for Standardization, 1994, ISO/IEC 
draft International Standard 11404, Geneva, Section 7.1.1.

Figure 2.1 Datatype Boolean Definition
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Example 1______________________________________________________
The following program statement (2.1) appeared in an algorithm published in 
Communications o f the ACM (Irons, 1961):

(2.1) SW := i f .  I N P U T [ j ]  = STAB[i] th e n  t r u e  e l s e  f a l s e

In this statement, a variable of type boolean is being assigned the value of the expression 
on the right. Statement (2.1) could be verbalized as “If expression iN PU Tl j ]  has the 
same value as expression STAB  [ i  ] , then store the constant value t ru e  in variable SW ; 
otherwise store the constant value f a l s e  in variable sw  ”. This treatment disregards the 
fact that the expression "lNPUT[ j ]  = STAB[ i ] ” has a boolean value — that is, the result 
of evaluating this boolean expression is either true or false, depending on the program 
state. Thus, statement (2.1) can be rewritten as:

(2.2) SW := I N P U T [ j ] = STAB[ i ]

Example 2______________________________________________________
Another example of variations in use of datatype boolean is the following warning given 
in Jensen and Wirth’s Pascal User’s Manual (1974, p. 27):

If fo u n d  is a variable of type Boolean, another frequent abuse of the 
i f  statement can be illustrated by:

(2.3) i f  a = b  th e n  fo u n d  := t r u e  e l s e  fo u n d  : = f a l s e

A more parsimonious statement is:

(2.4) fo u n d  : = a = b

In this example, statement (2.3) uses an i f - then- e ls e  control structure to assign one of 
two constants to boolean variable f o u n d , while statement (2.4) uses an assignment 
statement to assign the value of a boolean expression to found.  In statement (2.3), the 
outcome is described via the “control" decisions needed to determine the final value of 
f o u n d ; as the number of conditions increases, the decision structure becomes more 
complex. In statement (2.4), the value of the boolean expression is evaluated and that 
result assigned directly to the boolean variable. As the number of conditions increases, 
such an expression can be expressed more succinctly than can the corresponding multi­
part control structure —and thus the advantage grows.

Note: Program segments are given in Courier font. Reserved keywords such as i f .
t h e n , and e l s e  are, by convention, underlined. The statement “x  : = e" assigns the
result of evaluating expression e  to variable x. The two-character symbol “ : =“ is 
pronounced “becomes”, “receives the value", or “is assigned the value o f ’. The single­
character symbol “=" is the infix relational operator for equality.

Figure 2.2 Two Examples that Contrast Approaches to Assigning Boolean Values 
to a Variable
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for first-class citizenship is that it must be possible to pass arguments and return 

function values of the type. (N. McPhee, personal communication, November 22, 

1993; D. Gries, personal communication, December 10,1993).

In their 1988 text A Method o f Programming, Dijkstra and Feijen 

observed:

For the first 15 years, program execution was understood as a 
combination of ‘the computation of numbers’ and ‘the testing of 
conditions’. While the result of such a (numerical) computation 
was formed and stored for later use in the register or memory, the 
result of the test of a condition was used immediately (as in an 
alternative statement) to influence the further execution of the 
computation. One merit of Algol 60 was that by introducing 
variables of the type Boolean, it was made clear that the testing of 
a condition could be better understood as a computation —  not as 
the computation of a number but as the computation of a ‘truth 
value’. This generalization of the idea of computation is a very 
important contribution: the proof of a theorem can now be 
regarded as the demonstration that the computation of a 
proposition yields the value true. Although we shall only come 
across a modest number of variables of the type Boolean in our 
programs, the type Boolean should not be missing from any 
introduction to programming, (p. 43)

Whether student or professional, programmers’ understanding of fundamental

computer science concepts will be influenced by the features of the programming

language(s) they use. As a result, many programmers fail to benefit from a full

understanding of all of the characteristics of datatype boolean. Algol 60 brought

datatype boolean into first-class citizenship. The programming language C, on

the other hand, allows the programmer to treat boolean as a special case of the

type integer. The confusion caused by such conventions may interfere with

students’ understanding of mathematical logic.

A series of articles and letters published in the professional journal

SIGPLAN Notices illustrates the lack of consensus among practicing professionals
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1991; Nocolescu, 1991; Sakkinen, 1990). SIGPLAN Notices, published by the 

ACM Special Interest Group in Programming LANguages, has a readership of 

professionals specifically interested in issues surrounding programming language 

use, design, and standardization. In 1990, a heated discussion was launched when 

Boute (1990) presented his self-proclaimed “heretical” view of datatype boolean 

as a subtype of the numeric type natural. Boute’s position was based on a 

mathematical argument, which received limited acceptance but was eloquently 

rebutted by Sakkinen (1990) and Meeks (1990). Both Sakkinen and Meeks 

accepted Boute’s restriction for appropriate situations, but demonstrated that there 

were, in fact, many instances where a less restricted view of logic was more 

natural and useful. Meeks presented the full range of datatypes related to logic 

that were defined as part of the LID standardization effort (ISO, 1994), discussed 

earlier. The conclusion drawn by both Sakkinen and Meeks was that, while 

Boute’s formulation was valid in its own context and when needed, trying to view 

logic purely as a restricted subset of the natural numbers would limit the ability to 

express meaning accurately. In other words, if t r u e  and f a l s e  are the notions 

being expressed, it is unnecessary, confusing, and restrictive to coerce humans 

into translating them into 1 and 0 or some other representation.

2.3.2 Logic as the basis for formal methods

Formal methods encompass a wide range of techniques and languages 

used in the development of software. Wing (1990) defined a method as formal “if
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it has a sound mathematical basis, typically given by a formal specification

language” (p. 8). Cooke (1992) explained:

The term ‘Formal Methods’ alludes to the facility to be able to 
reason formally (in a mathematically precise, logical way) about 
the properties o f programs and systems. It covers not only 
programming languages and the common data types, their 
operators and their properties, but also logic, particularly the notion 
of deduction — ‘if something is true then something else is true’.
(p. 420)

Goldson, Reeves, and Bomat (1993) projected the “hope that the use of formal 

methods will make programs conform to specification and make them more 

reliable but such ‘methods’ are really nothing more than a collection of techniques 

imported from discrete mathematics, logic and set theory” (p. 373).

In the article “Logic as a formal method", Galton (1992) outlined a 

representative selection of the ways in which formal logic has been used in 

computer science. As applications of classical first-order predicate logic, he 

included program specification, program verification, program synthesis, and 

logic programming. Beyond classical logic, Galton sketched applications based 

on intuitionistic logic, temporal logic, modal logic, and logics for non-monotonic 

reasoning. He admitted that, even in his extensive survey, he had neglected many 

areas of computing in which logic is important; this serves to punctuate the 

breadth of the role of logic in computer science.

This subsection focuses on a specialized area within the range of formal 

methods that evolved from work in the formal development of algorithms. 

Researchers needed to manipulate formulae of the predicate calculus on a regular 

basis yet found that conventional logics, such as natural deduction, required a 

great deal of formal detail while providing little or no insight into the
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development process (Gries & Schneider, 1994). The need for a better model 

gave rise to the development of a collection of formal methods referred to as 

formal verification o f  program correctness (where correctness of a program is 

established a posteriori) and formal derivation o f correct programs (where the 

proof of correctness is developed as the program is developed).

Floyd (1967) was the first to suggest that the specification of proof 

techniques could provide an adequate formal definition of a programming 

language; he also analyzed the potential benefits of using an axiomatic approach 

for program proving and for formal language definition. In his seminal paper “An 

axiomatic basis for computer programming”, Hoare (1969) acknowledged Floyd’s 

suggestion that axioms could provide a simple solution to the problems that arise 

when aspects of programming languages are left undefined; whereas earlier 

language definitions had been primarily syntactic and in terms of implementation, 

axioms made it possible to give a non-operational language definition (i.e., 

independent o f implementation). Hoare presented an axiom system in which 

programs are expressed as formulae. Such formulae are predicates given in terms 

of triples {Q}S{R},2 where S is a statement from the programming language and 

Q and R are predicates on the variables used in the statement. Referred to as the 

precondition and the postcondition, Q and R describe the initial and final program 

states of the statement S. By using axioms and rules of inference that specified

2 This discussion ignores the steps that led from consideration of only “partial correctness" to 
“total correctness". Partial correctness does not address the issue of program termination. 
Minor notational changes that were a part of this evolution are ignored in favor of the later 
notation.
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the meaning of statements in a simple programming language, it was possible to 

verify the correctness of a given program written in that language.

As an alternative to proving the correctness of given programs, Dijkstra 

(1968) proposed controlling the process of program generation. In the early 

1970s, Dijkstra introduced the notion of predicate transformers as a systematic 

way to derive rather than verify programs (Dijkstra, personal communication, 

April 14, 1994). The process of program derivation with predicate transformers 

was described in Dijkstra* s classic book A Discipline o f Programming (1976) and 

expanded in the textbook A Science o f Programming by Gries (1981). Predicate 

transformers extended the Hoare axiom system and provided a means for defining 

programming language semantics in a way that would directly support the 

systematic derivation of programs from their formal specifications (Dijkstra & 

Scholten, 1990). In the Hoare-triple (Q}S{R), the predicate transformer takes as 

arguments statement S and postcondition R; it returns the predicate Q. Q, the 

precondition, is a predicate that is satisfied by all of the program states in which 

execution of statement S is guaranteed to terminate with predicate R true (Gries, 

1981). Stated more succinctly, a predicate transformer is a function of two 

arguments, a statement and a predicate, that returns a predicate as its result. 

Predicate transformers provide a basis both for deriving correct programs and for 

verifying the correctness of existing programs.

Over time, the activities o f program verification and program derivation 

have become more formal. As limitations in the use of predicate transformers 

were encountered, many researchers undertook the task of more formally defining 

the theory. Dijkstra and Scholten (1990) explain this process as follows:
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Probably conditioned by years of formal program derivation, we 
approached the task of designing the theory we needed as an 
exercise in formal mathematics, little suspecting that we were 
heading for a few of the most pleasant surprises in our professional 
lives. After a few notational adaptations of the predicate calculus 
—so as to make it more geared to our manipulative needs— and 
the adoption of a carefully designed, strict format for our proofs, 
we found ourselves in possession of a tool that surpassed our
wildest expectations In die course of the process we profoundly
changed our ways of doing mathematics, of teaching it, and of 
teaching how to do it. Consequently, this booklet is probably as 
much about our new appreciation of the mathematical activity as it 
is about programming language semantics. ... As time went o n ,... 
we were forced to conclude that the formal techniques we were 
trying out had never been given a fair chance, the evidence being 
the repeated observations that most mathematicians lack the tools 
needed for the skillful manipulation of logical formulae. We gave 
[the tools for manipulating logical formulae] a fair chance; the 
reader is invited to share our delight, (p. vi)

Dijkstra and Scholten’s efforts resulted in, among other things, an equational 

logic. This approach was used informally in the late 1970s and was refined 

through the 1980s. In the early 1990s equational logic has come into wider use, 

for example in discrete mathematics courses (this will be discussed in the next 

section). The key difference between equational logic and other forms of logic is 

the extensive use of value-preserving manipulations in the former rather than 

proofs composed exclusively of chains of implications.

2.3.3 Logic in discrete mathematics

In his article “Mathematics of computing", Saiedian (1992) traced the use 

of mathematics in computer science through the curricular recommendations 

listed in sections 2.2.1 and 2.2.2. He observed that Curriculum '68 explicitly 

recommended a computer science course in discrete mathematics, “Introduction to

Discrete Mathematics”. Curriculum '78, which listed the discrete mathematics
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course “Discrete Structures” as part of the general mathematical requirements, 

“did not define explicitly the details of topics to be covered in the course” (p. 208) 

and suggested the course as an applied mathematics component that mathematics 

departments could provide for computing students. With respect to Computing 

Curricula 1991 and the evolving role of the discrete mathematics course, Saiedian 

explained:

The recommendations very explicitly recommend a course in 
discrete mathematics with a list of all topics to be covered and 
further emphasizes that courses in both advanced discrete 
mathematics and mathematical logic (covering prepositional and 
functional calculi, completeness, proofs, etc.) be considered. As 
pointed out by a colleague, the Curriculum 1991 view on discrete 
mathematics and mathematical logic represents an “inverted bell- 
shaped curve” with respect to Curriculum '68 and Curriculum '78.
In 1968, discrete mathematics was considered very important when 
students going into computer science came mostly from 
engineering [so that background in] mathematics was no problem.
When computing became an area of study for a wider range of 
students during the 1970s, the emphasis, as reflected in the 
Curriculum '78, was decreased. However, as the computing 
discipline matured, it became evident that its foundations are 
strongly mathematical as shown in the Curriculum 1991. (p. 209)

A wide variety of discrete mathematics textbooks are currently available

for discrete mathematics: In an appendix to the MAA Report on Discrete

Mathematics in the First Two Years, Siegel (1989a) lists 37 textbooks in “A

bibliography of discrete mathematics books intended for lower division courses".

Siegel admits the list “will surely be out-of-date by the time this book appears” (p.

87); in fact, the list does not include three o f the textbooks that were used

regularly in discrete mathematics courses at the investigator's home institution

from 1988 to 1992. The diversity and number of discrete mathematics textbooks

demonstrates the perceived need for this material.
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In a comparative review of ten discrete mathematics textbooks, Spresser 

and LaTera (1992) used as a benchmark the requirements published by the 

Mathematical Association of America (Ralston, 1989; see section 2.2.2). Spresser 

and LaTera rated the coverage of formal logic as “very good” for eight of the ten 

books. For seven of the ten books, computer science students were listed as part 

of, if not the primary, intended audience.

Franzblau (1993) conducted an informal survey of approaches to teaching 

discrete mathematics. She presented three course models that she labeled “new”:

(i) discrete mathematics courses with a focus on proof and (re-)writing,

(ii) discrete mathematics as the first course for computer science majors, and

(iii) discrete mathematics courses where logic is used as a tool. For the current 

study, the third model is of the most interest. As an example of this model, 

Franzblau introduced the approach of Gries and Schneider (1993a, 1993b, 1994). 

In Franzblau’s words, they propose “a radically different and highly structured 

approach”.

Warford (in press) reviewed Gries and Schneider’s book A Logical 

Approach to Discrete Math (1993a) after using it as the text for a discrete 

mathematics course he taught. Warford explained that he found that the central 

role of the prepositional and predicate calculus allowed a unified treatment of 

other discrete mathematics topics (e.g., sets, mathematical induction, sequences, 

relations, functions, combinatorial analysis, recurrence relations, algebra, graph 

theory), as opposed to a “shotgun approach” where the course is made up of 

several seemingly unrelated topics. In teaching discrete mathematics using Gries 

and Schneider’s approach, Warford found that the character of the course began to
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resemble that of the traditional calculus: in traditional calculus, students progress 

through a series of skill-based exercises such as differentiation, the chain rule, and 

integration; in the Gries and Schneider approach to discrete mathematics, the 

skill-based exercises include textual substitution, Leibniz’s rule, boolean 

expressions, and quantification. In addition, both the traditional calculus and the 

logic-based discrete mathematics course have as an underlying theme the 

development of students’ skills with proofs and reasoning.

2.4 T he Connection  between Lo g ic  and R easoning

Logic has often been called the science of reasoning. Copi (1971) pointed 

out: “As thinking ... reasoning is not the special province of logic, but part of the 

psychologist’s subject matter as well” (p. 1). For psychologists, reasoning is 

interesting from the point of view of process, as a model for human thought; for 

logicians, the correctness of the completed reasoning process is o f the most 

interest. In the field of computing, the use of logic as a tool for expressing and 

proving theorems is a key focus.

This section explores connections between mathematical logic and 

reasoning. The section begins by exploring the importance of reasoning in 

academic success. The role of logic in psychology is discussed, with particular 

attention to Piaget’s theory of developmental stages due to both its use of 

propositional logic and its major impact on research in this area. Finally, a self- 

contained instrument designed to measure skill with propositional logic is 

discussed briefly.
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2.4.1 Reasoning skills needed in computer science

In 1986, Powers and Enright (1987) conducted a survey to determine the 

perceptions of a sample of college faculty members about the importance of 

analytical reasoning skills for graduate study. Powers and Enright noted, “Despite 

the perceived importance of reasoning, there seems to be no consensus regarding 

the impact of formal education on the development of reasoning abilities” (p. 

659).

The sample included 255 graduate faculty in six fields of study: chemistry 

(N = 37), computer science (N = 43), education (N = 42), engineering (N = 43), 

English (N = 44), and psychology (N = 46). Each participant completed a 

questionnaire that included items about the importance of various reasoning skills, 

including the extent to which each skill seemed to differentiate between marginal 

and successful students. The questionnaire also included items about the 

importance and frequency of commonly observed errors in reasoning.

Some reasoning skills were consistently rated as very important across the 

six disciplines. In decreasing order of rated importance, these skills were:

• reasoning or problem solving in situations in which all the needed 

information is not known

• detecting fallacies and logical contradictions in arguments

• deducing new information from a set of relationships

• recognizing structural similarities between one type of problem or theory 

and another
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• taking well known principles and ideas from one area and applying them 

to a different specialty

• monitoring one’s own progress in solving problems

• deriving from the study of single cases structural features or principles that

can be applied to other cases

• making explicit all relevant components in a chain of logical reasoning

• testing the validity of an argument by searching for counterexamples

Other skills were rated as important within one discipline but not in others.

For example, “knowing the rules of formal logic” was rated as one of the most

important skills in computer science but was rated as quite unimportant in the 

other disciplines. The two reasoning skills that were rated as most important or 

critical by the computer science educators were “breaking down complex 

problems or situations into simpler ones” and “reasoning or problem solving in 

situations in which all facts underlying a situation are known”.

While the underlying reasoning processes are important for academic 

success in many disciplines and logic and reasoning are intimately related, 

learning about logic is not synonymous with learning to reason. Specifically, 

logic is a topic in computing, with underlying skills as important for the student as 

the skills of arithmetic. This distinction is important when considering the role of 

logic in psychological studies: there is a tendency to blend the two, despite the 

differences. As Copi (1979) has stated: “...paradoxically enough, logic is not 

concerned with developing our powers of thought but with developing techniques 

that enable us to get along without thinking!” (p. 246).



www.manaraa.com

41

2.4.2 Logic and reasoning in psychological theories

Rothaug (1984) surveyed several views of the relationship between formal 

logic and the natural psychological logic of thought. The descriptive or rationalist 

view held that there is a close relation between logic and reasoning. Another view 

held that the laws of logic are only normative and are not useful as a descriptive 

model for thinking and reasoning. Piaget and other researchers have postulated 

that higher-level psychological processes reflect logical principles, so that formal 

logic provides a useful way to characterize a significant component of thinking 

and reasoning. Anderson (1980), a cognitive psychologist, viewed the use of 

logic as a useful heuristic method for learning about a subject’s behavior when the 

subject solves problems (rather than as a model for thinking). Anderson 

maintained “Reasoning is fundamentally a matter of problem solving, not a 

logical activity ... [and] deductive reasoning is a special case of problem solving 

rather than some special faculty of the mind” (p. 326). Evans (1980) criticized 

research on reasoning on the grounds that previous experiments in this area 

involved artificial situations with little relationship to real life situations.

Other views on the role of logic in psychology have been based on the 

assumption that human intelligence is not a single trait or process but is instead a 

collection of separate abilities. In these models, the ability to do logic is simply 

one of many abilities. For example, Guilford (1967) considered a three- 

dimensional model of intellect, organized around three main aspects of human 

functioning: operations, products, and content. In Guilford's theory, specific 

abilities involve a combination of each o f these dimensions. Gardner (1985)
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argued for the existence of several human potentials, each of which is relatively 

autonomous. Gardner hypothesized seven intelligences: logical-mathematical, 

linguistic, musical, spatial, bodily-kinesthetic, interpersonal, and intrapersonal; 

hence, his theory has been called Multiple Intelligences theory. Gardner and 

Hatch (1989) explain that there is not necessarily a correlation between any two 

intelligences and that each may entail distinct forms of perception, memory, and 

other psychological processes. They characterize the key components of the 

logical-mathematical intelligence as “sensitivity to, and capacity to discern, 

logical or numerical patterns; ability to handle long chains of reasoning” (p. 6).

2.4.3 Logic in Piagetian theory

Piagetian theory is complex and broad in scope, so it will only be covered 

at a very high level in this discussion. Piaget considered intelligence to be the 

process of adapting through the cooperating and invariant functions o f 

assimilation (response based on pre-existing information) and accommodation 

(response based on new information). Human development comes about not 

because of changes in function but rather due to changes in behavior over time. 

Structure describes the properties of intellect that govern behavior, with change 

occurring in response to demands of the environment. Schemata are the structures 

that allow the mental representation of knowledge; during early life, all o f these 

schemata are based on physical experience. As humans age, structure is defined 

in terms of less overt behavior, characterized by internal activities.3

3 The information in this paragraph and the next was synthesized from discussions by Furth 
(1969), Ginsburg and Opper (1979), Inhelder and Piaget (1958), Lefirancois (1988), and 
Stofflett & Baker (1992).
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With time, thought becomes subject to certain rules of logic, called 

operations. In Piaget’s theory, at the pre-operational stage (ages 2-7), thinking is 

limited because of the child’s reliance on perception and intuition as well as 

egocentric tendencies. At about age seven, the child enters the concrete 

operational stage. At this point, the child is able to apply operations to real 

objects and events. At the formal operational stage, which Piaget’s findings 

showed to begin at about age 12, the child is able to deal with hypothetical 

situations and can apply a formal set of logic rules or operations. The child thus 

can go beyond empirical reality (the first order operations) to “formal thought”; 

the child can now apply second order operations (which use the products of first 

order operations). Inherent in formal thought is the ability to perform the 16 

operations of propositional logic, outlined in Table 2.2. Inferences are drawn 

through applying logical operations to propositions; underlying this is the system 

of all possible relations, described by Piaget as the combinatorial system.

Piaget’s theory was for childhood and adolescence, with the formal 

operational stage beginning about age 12. However, Petrushka (1984) cites 

numerous studies that have shown that a majority of adults, including college 

students and professionals, fail at many formal tasks.

Ginsberg and Opper (1979) clarified that Piaget uses logic not to describe 

explicit knowledge but to depict the structure of thought, that is: how does logical 

thought mediate problem solving? The logical models are not descriptions of 

actual performance but are instead abstractions intended to capture the essence of 

thought and to allow psychologists to explain and predict behavior. Parsons 

(1958) explained that Inhelder and Piaget (1958) used logic as a theoretical tool in
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describing the mental structures that govern ordinary reasoning and thought. She 

pointed out that, while logic is concerned with formalizing internally consistent 

systems, psychology deals with mental structures independent of any formal 

training or use of symbols and “regardless of consistency or inconsistency, truth 

or falsehood” (p. viii). As Furth (1969) pointed out, however, Piaget’s models 

were only intended to reflect developing intelligence, which diffuses the 

criticisms of the logicians (that the model is not sufficiently sophisticated) and the 

psychologist (that the model is too far removed from real thinking).

2.4.4 An instrument for measuring ability in logic and reasoning

The Propositional Logic Test (PLT), developed and used over a number of 

years by science education faculty and students at Rutgers University, assesses a 

subject’s ability to process propositional statements. In taking the PLT, the 

subject is allowed IS minutes to interpret truth-functional operators by identifying 

instances that are consistent or inconsistent with a stated rule (see Figure 2.3 for 

an example item). The PLT, which consists of 16 items, can be broken into four 

4-item subtests. Each subtest addresses one of the Piagetian operations 

conjunction, disjunction, implication, and biconditional. On the PLT, error 

patterns are apparent because there are exactly 16 ways that any question could be 

answered (i.e., the truth tables of the 16 binary operations of logic as shown in 

Table 2.2).

Pibum (1989) has reported that the PLT as a whole has high reliability and 

that subtest reliability is best for the biconditional subtest and decreases over the
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Table 2.2 Piaget’s System of 16 Binary Operations

Piaget’s Dis. unctivc Normal Form

Notation Operation Name p s / q P V n ? - p v q —p v —q

0
l. PLT:

G&O:
negation
same F F F F

p - q
2. PLT:

G&O:
conjunction
same T F F F

p q
3. PLT:

G&O:
non-implication 
inverse of implication F T F F

p q
4. PLT:

G&O:
non-converse implication 
inverse of converse implication F F T F

■*» 
I I 5. PLT:

G&O:
conjunctive negation 
same F F F T

P U l
6. PLT:

G&O:
affirmation of p  
independence of p  to q T T F F

q l p ]
7. PLT:

G&O:
affirmation of q 
independence of q to p T F T F

p u q
8. PLT:

G&O:
material equivalence 
reciprocal implication T F F T

p y j y j q
9. PLT:

G&O:
exclusive disjunction 
reciprocal exclusion F T T F

9 fP l
10. PLT:

G&O:
negation of q 
inverse of #7 F T F T

p l q ]
11. PLT:

G&O:
negation of p  
inverse of #6 F F T T

p u q
12. PLT:

G&O:
inclusive disjunction 
disjunction T T T F

qz>p
13. PLT:

G&O:
reciprocal implication 
converse implication T T F T

p-=>q
14. PLT:

G&O:
material implication 
implication T F T T

p / q
15. PLT:

G&O:
incompatibility
same F T T T

p  * q
16. PLT:

G&O:
tautology
same T T T T

Note: PLT is the operation name as defined in the key for the Propositional Logic Test, 
1990; G&O is the operation name as defined by Ginsburg & Opper, 1979, p. 191.
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If it is white then it is round.

If it is white then it must be round, but if it is tiled then it doesn’t matter if it is round or 
not. So the white circle fits but the white square does not. The tiled figures all fit because 
the statement only tells us about white figures.

Figure 2.3 Sample Item from the Propositional Logic Test (PLT)

implication, conjunction, and disjunction subtests. The PLT has been shown to 

correlate highly with grades in natural science courses as well as with the Test of 

Logical Thinking (TOLT), another instrument based on Piagetian theory (Tobin & 

Capie, 1981). In contrast to other measures of ability with propositional logic, 

error patterns on the PLT have revealed systematic relationships between age and 

ability that appear to reflect underlying reasoning processes (Pibum, 1989).

2.5 L o g ic  a s  a  T o o l  f o r  P re d ic t in g  S u ccess  in  S c ien ce

For science educators, the relationship between logic and science is of 

special interest because of important parallels between the two: both are systems 

that seek truth and the systematic procedures employed by each resemble one 

another (Rothaug, 1984). In addition, Rothaug pointed out that, where logic 

investigates truth relations between sentences, science seeks to establish in a 

systematic way the truth of sentences based on the truth o f other sentences . 

Science educators have shown that, given their definitions of reasoning and 

success, the ability to reason is strongly related to success in science. Stofflett 

and Baker (1992) point to results that indicate that students who reason well score
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higher on content examinations, have stronger process skills, and have more 

interest in science.

Various studies with students in college physics courses have shown 

correlations of .30 to .75 between a variety of measures of logic and achievement 

in the course (e.g. Baker & VanHarlingen, 1979; Enyeart, VanHarlingen & Baker, 

1980; Lockwood, Pallrand & VanHarlingen, 1980; Pallrand & VanHarlingen, 

1980; Pibum & Baker, 1988; Seeber, Pallrand, VandenBerg & VanHarlingen, 

1979). Similar results were obtained in studies of high school physics students 

(Lockwood, Pallrand & VanHarlingen, 1982) and college chemistry students 

(Rothaug & Pallrand, 1982; Rothaug, Pallrand & VanHarlingen, 1981).

The Propositional Logic Test (PLT), described in an earlier subsection, 

has been used to measure ability in logic in a number of studies. For example, 

Pibum (1990) considered several questions in a study with Australian high school 

science students: (1) Is achievement in science positively correlated with ability 

to reason about logical propositions? (2) Are some logical operators more 

strongly related to achievement in science than others? (3) Is reasoning about 

logical propositions related to sex or ability level? (4) Are patterns o f error on a 

test of the ability to reason about logical propositions related to ability?4 Pibum 

found that the coefficient of correlation between final grade in science and success 

on the PLT for the entire sample was .57. He also considered subtest correlations 

for conjunction, disjunction, implication, and biconditional. He found that 

advanced students received the highest scores and basic students the lowest, with

4 In the Australian school system, students are tested and, based on their scores, classified into 
ability groups as advanced (top 25%), basic (bottom 25%) or intermediate (the middle 50%) 
(Pibum, 1990).
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the greatest difference showing up between advanced and intermediate students. 

Pibum discovered that the pattern of errors on subtests across ability groups in the 

Australian sample was the same as that across grade levels in cross-sectional 

studies of American students from grades 7 to the first year in college. Pibum 

found that correlations between the score on the PLT and achievement in science 

were significant and relatively high for both the Australian and American 

samples.

Stager-Snow (1985) designed a study in which the subjects were students 

in an introductory computer science course for non-computer science majors. Her 

results indicated that for the females in the sample the PLT was a weak predictor 

variable; for the males, the PLT had no predictive power. In addition, Stager- 

Snow found that knowledge of the i f - t h e n  statement contributed more to the 

variance in explaining computer knowledge for the females than for the males.

2.6 C ontent  A nalysis as a resea rc h  m eth o d o lo g y

In its simplest form, content analysis is a technique for making replicable 

and valid inferences from textual data to their context. It is frequently used in the 

social sciences, especially for the purpose of analyzing communications such as 

newspaper articles or textbooks. As an example, suppose that a researcher was 

interested in studying the use of symbols and language in messages posted on 

electronic bulletin boards for the strategic use of humor. Using content analysis, 

the investigator could evaluate occurrences of textual figures, icons (e.g., the 

smiley face : -) ) ,  and phrases (e.g., parenthetical remarks such as (wink, wink)) 

for intent to express humor.
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Content analysis is exploratory, fundamentally empirical in orientation, 

and predictive in intent (Krippendorff, 1980). As a methodology, content analysis 

enables the researcher to plan, to communicate, and to critically evaluate the 

research design independently of the results. Content analysis provides a basis, for 

making inferences through the systematic and objective classification of specified 

characteristics within a text (Stone, Dunphy, Smith, & Ogilvie, 1966). In the 

current study, the characteristics of interest were the concepts of logic; the text 

under consideration was the examination(s) to be analyzed; and the inferences 

were made by individuals serving as judges, who used a four-category 

classification system to rate examination items for their relationship to logic.

When designing a content analysis study, the researcher must identify both 

the phenomena to be studied and potential sources of data. Any content analysis 

includes two kinds of reality, “the reality of the data and the reality of what the 

researcher wants to know about” (Krippendorff, 1980, p. 170). Since the two 

realities seldom map directly onto one another, the researcher must discover ways 

to analyze the available data so they are indicative of the phenomena of interest. 

Given a universe of appropriate data, the researcher must define:

• a sampling plan (e.g., every third book from a randomly ordered list of 

books),

• a method for breaking each sample into units (e.g., words, sentences, 

paragraphs, or chapters), and

• a coding or classification system that will be used to record information 

about the units.
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While content analysis can be conducted by a single individual, usually it 

involves two or more coders or judges. As a means for anticipating and solving 

problems, testing and training are vital aspects of the planning process. Because 

insight gained during the design and training process may point out problems or 

better approaches, the design process will be iterative. Problems such as 

inconsistencies or missing records can emerge even in carefully planned studies. 

The content analysis proper begins only after the procedure is stable.

During the analysis phase, the researcher must evaluate the coding results 

for reliability and validity. Reliability techniques in content analysis are targeted 

toward evaluating agreement among judges and ratings. Several types of 

reliability can be calculated: overall reliability of the content analysis, item 

reliability (how consistent were the judges in rating the particular item?), single 

category reliability (how consistently was the content analysis classification 

system used?), and judge reliability (how well did each judge agree with the 

remaining judges?).

In content analysis, the issue of validity is related to external validity; 

internal validity is simply another term for reliability. External validity concerns 

two phenomena: 1) how well the findings reflect the true phenomena in the 

context of the data, and 2) whether there is a correspondence between variations 

within the analysis process and variations that exist outside of the process.

This section concludes with an informal survey of studies that have used 

content analysis in their design. The source of this information is the dissertation 

abstracts reported in the ProQuest Dissertation Abstracts On Disc (January, 1993— 

February 1994). This survey is essentially a content analysis of the abstracts.
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A keyword search using the phrase “content analysis” matched 362 

dissertation abstracts in the database. Of these, six were eliminated from 

consideration because they described research in the natural sciences; in these 

studies, the content being analyzed was physical phenomena such as hair, water, 

or digestive tract. Of the remaining 356 abstracts, 111 were for degrees awarded 

in 1993,211 were for 1992,26 were for 1990, four were for 1990, three were for 

1989, and one was awarded in 1984.

An average of 2.32 subject categories were listed for each abstract (a 

maximum of three subject categories could be given for an abstract). Table 2.3 

summarizes the subject categories ordered by frequency of citation. Table 2.4 

shows the breakdown into component categories of two of the most frequently 

named categories, Education and Psychology. These categories were chosen as 

examples for their close connections to the current study. Table 2.5 summarizes 

the data collection techniques that were used in the abstracts. Figure 2.4 is the 

synopsis of an example abstract related to the field of computer science (Murfin, 

1993).
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Table 2.3 Frequency of Subject Categories in Sample of Dissertation Abstracts 
using Content Analysis

subject
category

#
abstracts

library science 4
agriculture 3

cinema 3
engineering 3

music 3
recreation 3

religion 3
urban and community planning 3

black studies 2
computer science 2
home economics 2

information science 2
theater 2

American studies 1
art history 1

biographical 1
fine arts 1

philosophy 1
transportation 1

subject
category

#
abstracts

education 289
sociology 87

psychology 85
health science 70

mass communication 52
political science 43

journalism 29
business administration 21

speech and communication 18
history 15

social work 14
women’s studies 13

anthropology 8
law 8

language 7
literature 7

economics 4
geography 4

gerontology 4
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Table 2.4 Component Categories for Two Frequently Reported Subject 
Categories in Sample of Dissertation Abstracts using Content Analysis

subject category component categories # abstracts
Education curriculum and instruction 43

administration 37
higher education 20

teacher education and training 17
elementary education 13

psychology of education 12
adult and continuing education 11

genera] educational issues 11
intcrcultural education 11

guidance and counseling 10
language and literature 10
secondary education 10

sociology of education 8
special education 8

early childhood education 7
religious education 6

social sciences education 6
mathematics education 5

reading education 5
health education 4

history of education 4
educational technology 4
tests and measurements 3

art education 2
business education 2
community college 2
industrial education 2

music education 2
philosophy of education 2

physical education 2
science education 2

vocational education 2
agricultural education 1
finance of education 1

home economics 1
Psychology clinical 20

social 18
developmental 11

personality 10
general 7

industrial 6
behavioral 5

experimental 3
physiological 3
psychometrics 2
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Table 2.5 Source of Data or Method of Generating Data Reported in Sample of 
Dissertation Abstracts Using Content Analysis

source of data/ 
method of generating data

#
abstracts

electronic communication 5
magazine 4

reference book 3
visual (photographs) 3

arts (e.g. dance) 2
field notes 2

film 2
paper & pencil instrument 2
ioumal/reflective writing 2

music 2
radio 1

speech 1

source of data / 
method of generating data

#
abstracts

official document 125
interview 98

newspaper 36
questionnaire 21

television 16
article 16

textbook 14
survey 13

literature 11
discourse 9

observation 8
advertising (magazine or TV) 6

Title: An Analysis of Computer-Mediated Communication between Urban Middle 
School Students and Scientists (Urban Education)

Author: Murfin, Brian Edward
School: The Ohio State University
Degree: Ph.D.
Date: 1993
Source: DAI-A 54/05, p. 1770, Nov 1993.
Subject categories: education, technology 

education, sociology of 
computer science

Purpose of studv: determine the characteristics of effective and ineffective computer-
mediated communication between urban middle school students and scientists.

Sample: 20 urban, middle school students and 10 adult scientists and non-scientists.
Units of studv: An electronic bulletin board system (BBS) was used to link the scientists 

and students; 911 messages were posted on the BBS over a 10 week period.
Conclusions: content analysis of all messages revealed, among other things:

(1) the number of positive messages was greater than the number of neutral or 
negative messages

(2) the students mainly sent messages to only one individual and did not take 
advantage of the multiloguing [i.e., multiple people in dialogue] capability of 
computer-mediated communication

(3) non-science messages were more numerous than were science messages.

Figure 2.4 Synopsis of Example Dissertation Abstract in which the Design used 
Content Analysis
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Chapter 3 Research Design

Chapter 3 presents the research design, elaborating, in the process, the 

research questions posed in Chapter 1. This study was exploratory and 

descriptive in nature. Preparatory activities included development of a taxonomy 

of relevant concepts and identification of appropriate computer science materials 

for analysis. Using a content analysis procedure, expert judges rated multiple- 

choice items using a four-category classification system. The classification 

system allowed each judge to indicate the degree of relationship between an item 

and the subdomain criteria (the taxonomy of concepts). The data that resulted 

from content analysis were used in two distinct analyses: (a) use of the strength 

ratings to assign the items to strongly related and not strongly related partitions 

and (b) determination of the reliability of the content analysis results. The 

partitions o f items provided the basis for answering the research questions 

comparing performance data across the partitions.

3.1 I dentifying  c o n c epts  in  th e  Subdomain Logic

The investigator developed a taxonomy of concepts to provide a concrete 

definition of concepts in the computer science subdomain of mathematical logic. 

The taxonomy outlined logic concepts that were particularly relevant to this 

research, thus focusing the subsequent research effort on a well-defined set of 

concepts.

55
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The development of the taxonomy was an iterative process influenced by a 

wide variety of sources, including standard computing curriculum guidelines (e.g., 

Austing, 1979; Koffman, Miller, & Wardle, 1984; Koffman, Stempel, & Wardle 

1985; Tucker, 1990), the way in which the concepts were presented in 

undergraduate textbooks (e.g., Dale & Walker, in press) and more advanced texts 

(e.g. Gries, 1981; Sperschneider & Antoniou, 1991), and the draft o f an 

international standard for datatypes (ISO, 1994). During its development, the 

taxonomy was reviewed by several computer science educators to ensure its 

content validity.

The resulting taxonomy is a broad outline that provides a breakdown of 

advanced as well as basic concepts of logic. The taxonomy was labeled as 

containing concepts in the computer science subdomain “two-valued logic” in 

order to emphasize the sort of logic that was under consideration in the content 

analysis procedure.

As a pictorial synopsis of the concepts belonging to the subdomain of 

interest, the Quick Reference to the Concepts o f  "Two-Valued Logic” was 

designed to aid the judges in completing the classification task. Figure 3.1 is the 

quick reference guide that was provided to each judge who participated in the 

final phase o f the content analysis procedure. The full taxonomy is given in 

Appendix C.
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Figure 3.1 Pictorial Representation of the Taxonomy of Concepts in the 
Computer Science Subdomain of Two-Valued Logic
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3.2 I dentifying  a Source o f  Test  I tem s fo r  A nalysis

This research depended on having a source of test items for which:

(a) the content tested by the examination covered beginning computer science 

concepts, including concepts in the subdomain of logic;

(b) the content of the examination items could be analyzed for strength of 

relationship to the concepts of logic;

(c) a sufficiently large sample of students had taken the examination(s) from 

which the items were drawn; and

(d) performance information was available for the sample.

The publicly available Advanced Placement Examinations in Computer Science 

(APCS examinations) appeared to meet all of these criteria. Because several 

thousand students take the examination each year, statistics about the examination 

outcome provide a broad base of information about the performance of novice 

computer science students.

The College Board’s APCS examination is designed to test the material 

covered during the first two courses of the post-secondary computer science 

curriculum, generally referred to as “CS1” and “CS2” (Austing, 1979; Koffman, 

Miller, & Wardle, 1984; Koffman, Stempel, & Wardle 1985). The full topic 

outline for APCS courses is given in Appendix B. Figure 3.2 summarizes the 

topics from the APCS outline that most nearly match those in the taxonomy of 

logic defined for this research. This extract is somewhat generous, in that it
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includes several topics that will sometimes be related to logic, rather than topics 

that are only related to logic.

Each of the APCS examinations was made up of two parts, a multiple- 

choice section and a free-response section. Each multiple-choice section included 

from 35 to 50 items while the free-response section included three or five items. 

A multiple-choice item comprised a problem statement and five alternative 

responses, one of which was correct. Each free-response item presented a 

problem description or specification for which the respondent was to write all or 

part of an algorithm or computer program. Scoring of the multiple-choice items 

was done using a mechanical scanning and scoring system. The free-response 

section was scored manually by teams of computer science educators using 

scoring rubrics.

Due to the laws in several states, the free-response items must be made 

publicly available annually. However, ETS is only required to disclose the 

multiple-choice questions every fourth year. As a result, the full APCS 

examinations were available for the years 1984, 1988, and 1992. For each of 

these three years, Educational Testing Services (ETS) published a report that 

included the full text of all items, the correct answers for the multiple-choice 

section, grading rubrics for the free-response items, and selected statistical 

analyses (College Board, 1986,1989,1993).

Files obtained from ETS included anonymous individual data for all 

candidates taking the examinations under consideration. For each respondent, the 

following information was included: demographic information (gender and
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ethnicity), response to each multiple-choice item, the score on each free-response 

item, and overall APCS grade.

While the sampling represented by the APCS examinations was extensive, 

it was also self-selective. Only some students took the classes that prepared them 

to take the examination and, of these students, only some chose to take the APCS 

examination. Due to the stated purpose of the AP program, a majority of the 

students who took the examination were college-bound (College Board, 1990).

A. Programming methodology
1. Specification

b. Program and subprogram specifications 
(e.g., pre- and postconditions)

2. Design
3. Implementation

b. Program correctness
i. Testing and debugging

A. Reasoning about programs
B. Assertions
C. Invariants

ii. Verification
B. Features of block-structured programming languages 

1. Type and constant declarations
b. Simple data types
c. Structured data types

3. Expressions and evaluation
4. Assignment statements
5. Control structures

b. Conditional execution
c. Loops

7. Subprograms
C. Fundamental data structures

Figure 3.2 Topics from the APCS Outline that Correspond to Concepts in 
Taxonomy of Concepts in the Computer Science Subdomain of Logic
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The APCS data used in this study comprised

• four distinct examination packets (1984, 1988,1992A, 1992AB), and

• five distinct samples (1984,1988A, 1988AB, 1992A, 1992AB).

The examination packets were used in the content analysis procedure, while the 

five samples of respondents were used in analyzing performance.

3.3 Th e  Content A nalysis Procedure

This research design adapted methods of content analysis to classify each 

multiple-choice item from the four APCS examination packets for strength of 

relationship to logic. The content analysis techniques were based on those 

described by Krippendorff (1980) in Content Analysis: An Introduction to Its 

Methodology. This book describes the philosophy, sampling techniques, and 

methods of validation and analysis to be used in designing and carrying out a 

content analysis procedure.

The most common use of content analysis in the past has been to analyze 

written text or recorded conversation for the occurrence and meaning of certain 

words, phrases, and ideas. This study adapted the procedure to allow the judges 

to rate each APCS multiple-choice item according to how strongly it was related 

to the subdomain of logic. The content analysis procedure is detailed in the 

sections that follow.

3.3.1 The taxonomy of concepts as a guideline

The taxonomy of concepts in the subdomain of two-valued logic was 

initially developed as an outline of topics (see Appendix C). During pre-pilot 

testing of the content analysis procedure, it was determined that, in outline form,
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the taxonomy was too detailed for easy use. The top levels of the taxonomy were 

extracted and reorganized into a chart that fit on a single page. The taxonomy 

chart, given earlier in Figure 3.1, was called the Quick Reference to the Concepts 

o f  “Two-Valued Logic". The philosophy behind the quick reference guide was to 

lay out the concepts of logic in an accessible format for easy reference. This 

provided judges with explicit guidelines of which concepts were considered to be 

within and outside of the subdomain of interest; it appealed to their understanding 

of the subdomain and clarified the purposes of the content analysis task.

3.3.2 The units to be classified

Because each free-response item on an APCS examination tends to 

encompass a wide variety of concepts and skills, isolating the role each 

component concept plays in the item as a whole is difficult. In contrast, the 

multiple-choice items are more narrowly focused on a few concepts but are still 

sufficiently complex to make the performance data significant. As a result, only 

the multiple-choice items were considered during the content analysis procedure.

The pilot phase used two examination packets, those for 1984 and 1988. 

The final content analysis phase considered all items from the four examination 

packets for 1984,1988,1992A, and 1992AB.

3.3.3 The content analysis classification system

The classification system in Table 3.1 was used by individual judges to 

associate each item with one of the categories ‘main concept*, ‘vital subconcept’, 

‘trivial subconcept’, and ‘not used’. Several changes made to the classification 

system over the course of its development led to an ordered system with nice
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Table 3.1 Classification System for Indicating Strength of Relationship Between 
APCS Multiple-Choice Items and the Subdomain Under Study

main concept The item deals directly with the concepts of two-valued logic.

vital subconcept In this item, one or more concepts of two-valued logic arc important 
subconcepts but not the primary focus.

trivial subconcept In this item, one or more concepts of two-valued logic appear but 
have little bearing on the solution.

not used The concepts in this item bear no meaningful relationship to the 
subdomain of two-valued logic.

symmetry among categories, since each category focused directly on the notion of 

strength of relationship to concepts. The range of values was from ‘main concept’ 

as the strongest relationship down to ‘not used*, where no relationship to the 

subdomain existed. The taxonomy of concepts, described in an earlier subsection 

and given in Figure 3.1, assisted the judge in determining whether the item 

included any logic concepts. If not, the item was rated ‘not used’; otherwise, the 

judge had to determine whether to rate the item as having logic as a ‘trivial 

subconcept’, a ‘vital subconcept’, or a ‘main concept’.

3.3.4 The judges

The judges for both the pilot and final content analysis phases were 

selected for their expertise in computer science education. Each judge, also 

referred to in this dissertation as an expert, was in some way involved with the 

introductory computing curriculum. Most judges were instructors of beginning 

computer science at the pre-college or post-secondary level, many recruited from 

the pool of readers (graders) for the free-response items on the 1993 APCS
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examinations. Another group of judges was recruited from among the 

participants in an NSF-sponsored workshop about using formal methods in the 

introductory computer science sequence5. Several of the judges were authors of 

introductory computer science textbooks.

3.3.5 Pilot phase of the content analysis procedure

To test the content analysis procedure, several pilot runs were conducted. 

The pilot runs considered only the multiple-choice items from the 1984 and 1988 

examinations because the 1992 APCS examinations were not available at that 

time. Experience gained during the pilot runs led to creation of the quick 

reference guide (Figure 3.1), refinements to the classification system, and major 

simplification of the content analysis procedure. The pilot data allowed 

refinement of the reliability analysis and other statistical procedures. The results 

from the pilot phase provided preliminary evidence supporting the hypothesis that 

novice computing students tend to have greater difficulties with items closely 

related to the concepts of logic than they generally have with items dealing with 

other concepts.

3.3.6 Final phase of the content analysis procedure

In the final content analysis procedure, each judge received the following 

materials: (1) a cover letter with instructions (see Appendix D), (2) the quick 

reference guide, which provided an overview of the taxonomy of two-valued logic 

concepts (see Figure 3.1), (3) a table with the correct answers to all items in the

5 NSF UCC grant USE9156008, "Program Derivation for First-Year Computing Students", 
Walter M. Potter (principal investigator), June 3-5,1993, Southwestern University, 
Georgetown, TX.
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four examination packets, (4) the four examination packets, (5) four copies of the 

coding form (see Appendix E), and (6) a stamped envelope addressed to the 

researcher for return of the completed forms.

Judges completed the rating task at their convenience. A key requirement 

was that they not discuss their rating of the APCS examination items with anyone 

until after the task was complete. This constraint avoided the situation where two 

judges, by collaborating, produced a single combined rating rather than two 

individual ratings. This constraint also reduced the likelihood of inconsistencies 

that could arise in a judge’s ratings because of outside influences.

A total of 150 forms were returned: 38 for the 1984 examination packet, 

36 for the 1988 examination packet, and 38 each for the two 1992 examination 

packets. With few exceptions, the forms were complete and filled in correctly. In 

the few instances where a judge had inadvertently omitted the rating for an item, 

the researcher contacted the judge directly for the missing rating.

3.4 T he Data

The ratings that resulted from the final content analysis procedure, 

together with the five APCS data sets from ETS, provided the basis for studying 

student performance on the examinations. The content analysis ratings identified 

the APCS items most relevant to informing this research, while the ETS data 

provided information about student performance on all of the multiple-choice 

items. Table 3.2 summarizes the data and the sources o f each. The following 

subsections clarify the data.
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3.4.1 The ETS data sets

Educational Testing Service (ETS) provided files containing anonymous 

data for every individual who took the five examinations under consideration. 

The data that was relevant to this research was the response on each multiple- 

choice item (or an indication that the item was omitted).

In analyzing the response data, several additional variables were 

developed. For every respondent, the following variables were calculated:

(1) For each multiple-choice item, a dichotomous indicator of whether the

item was answered correctly.

(2) For each multiple-choice item, a dichotomous indicator of whether the

item was omitted by the student (i.e., no answer was given).

(3) The total number of multiple-choice items answered correctly.

Item (3) differed from the multiple-choice score reported by Educational

Table 3.2 Data Used in Study and Source from which Obtained or Derived

Educational Testing Services Data Sets Content Analysis Procedure
per test • number of multiple-choice items

• number of respondents in individual 
data files

• number of judges
• classification categories

per multiple- 
choice item

• correct choice
• frequency of each of the five answer 

choices being selected by a respondent
• proportion of respondents answering 

item correctly
• proportion of respondents omitting 

item

• rating assigned by each judge
• summary of ratings, that is, 

the frequency of each category
• indication of partition under 

each partitioning algorithm

per respondent • response for each multiple-choice item 
or indication that item was omitted

• number of items answered correctly on 
the multiple-choice portion

• number of items attempted on the 
multiple-choice portion

• proportion of multiple-choice items 
answered correctlv

• number of correctly answered 
items in each partition under 
each of the partitioning 
algorithms

• number of items attempted in 
each partition under each of 
the partitioning algorithms
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Testing Services, which factored in a penalty for incorrect answers. The ETS 

score was calculated as Number Correct -  (1/4 * Number Wrong), where Number 

Wrong was the number of multiple-choice items that were attempted but 

incorrectly answered.

3.4.2 The content analysis data

The content analysis data included the number of judges as well as 

information about the classification system (the number of categories and a code 

for each). The ratings from the individual judges were accumulated into a ratings 

summary table showing the frequency of occurrence of each category for each 

item. The ratings summary table provided the basis for the reliability calculations 

as well as for the partitioning algorithms described in the following subsection.

3.4.3 Partitioning of multiple-choice items

The partitioning procedure created two sets of multiple-choice items, one 

for each of the two extremes of relationship to the concepts of logic. Assignment 

of an item to a partition depended on the cumulative ratings from the content 

analysis procedure. To be assigned to the strongly related partition, an item had 

to be rated as either ‘main concept’ or ‘vital subconcept’ by a majority of the 

judges. To be put into the not strongly related partition, an item had to be rated as 

either ‘trivial subconcept’ or ‘not used’ by a majority of the judges.

Two different partitioning algorithms were used to assign each item to the 

appropriate partition. As a result, two different pairs o f partitions were 

considered.
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(1) In the liberal partitioning algorithm, a given item was put in the strongly 

related partition if  at least 50% of the judges had rated the item as either 

‘main concept’ or ‘vital subconcept’. The item was put in the not strongly 

related partition if fewer than 50% of the judges had rated the item as 

either ‘main concept’ or ‘vital subconcept’ (i.e., at least 50% of the judges 

had rated the item as either ‘trivial subconcept’ or ‘not used’).

(2) In the conservative partitioning algorithm, a given item was put in the 

strongly related partition if at least 75% of the judges had rated it as either 

‘main concept’ or ‘vital subconcept’. The item was put in the not strongly 

related partition if at most 25% of the judges had rated it as either ‘main 

concept’ or ‘vital subconcept’ (i.e., more than 75% of the judges had rated 

it as either ‘trivial subconcept’ or ‘not used’).

The rationale for using two different partitioning algorithms was as follows: In 

the liberal partitioning algorithm, all items from all four examinations were 

assigned to one of the two partitions. The 50% level of agreement meant at least 

half of the judges concurred about the relatedness of the item. Under the 

conservative model, the items in the mid-range were considered to be noise: all 

items for which 25% to 75% of the judges rated the item as ‘main concept’ or 

‘vital subconcept’ were eliminated from consideration. Eliminating the mid-range 

items compensated for chance choices by judges. This handled the problem of 

“borderline” items, those items that could shift between partitions based on a 

change in rating by only one or two judges. Thus, the partitions in the 

conservative model included only those items for which the cumulative rating of 

the item’s relationship to logic was especially strong or weak.
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After the partitions were established, four additional variables were 

developed for each respondent. These variables were the number o f items 

answered correctly in each of the pairs of partitions, that is, (1) in the strongly 

related partition under the liberal algorithm, (2) in the not strongly related 

partition under the liberal algorithm, (3) in the strongly related partition under the 

conservation algorithm, and (4) in the not strongly related partition under the 

conservative algorithm. In carrying out the subsequent analyses, two parallel 

analyses were done in most instances, one for each of the two pairs of partitions.

3.5 Analysis o f  th e  data

3.5.1 Analysis of data in ETS files

Summary data was developed for the data in the files from ETS. For each 

examination, the composition of the examination was considered and performance 

statistics were generated for the multiple-choice section. Multiple-choice items 

common to the A and AB versions of the 1988 and 1992 examinations were 

compared across versions for differences in profiles and performance.

3.5.2 Reliability of the content analysis results

The reliability of the content analysis results was evaluated using a suite of 

analysis procedures based on Krippendorff (1980). Because the author found no 

pre-existing software for calculating the reliability figures in a straightforward and 

easily interpretable fashion, she designed and implemented her own software 

package. The statistics from this package included overall reliability, the
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reliability of each category in the classification system, and individual judge 

reliability.

In content analysis, reliability is expressed as the amount of agreement 

that exists among the ratings given by all of the judges. Agreement is calculated 

using the formula a  = 1 -  D0 /  De, where a  is the agreement coefficient, D0 is the 

observed disagreement, and De is the expected disagreement.6 The agreement 

coefficient is interpreted as the reliability of the rating, where a value of 1.0 means 

“perfect agreement”, 0.0 means “agreement entirely due to chance”, and -1.0 

means “perfect disagreement”.

3.6 Research  Q uestions and Methods o f  A nalysis

Up to this point, only the procedure for investigating the first research 

question posed in Chapter 1 has been presented. This question was:

(a) Can a procedure be developed for reliable and valid classification of 

content-area test items according to their degree of relationship to a pre­

defined set of logic concepts?

Due to the nature of this question, no null hypothesis was formulated for 

statistical analysis. The positive answer to the research question was based on the 

proof of concept that came from implementing the content analysis procedure and 

generating the strongly related and not strongly related partitions of items.

Given the positive result for research question (a), the remaining research 

questions could be considered. These questions were the following:

6 Expected disagreement is calculated as the average difference within all possible pairings of 
ratings, both across judges and across items. It is based on the null hypothesis that any 
differences in ratings are attributable only to chance. See Krippendorff (1980) for a complete 
description.
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(b) In considering student performance on the test items, was the distribution 

of performance different for items whose content was strongly related to 

logic than for items whose content was not strongly related to logic?

(c) Was there a relationship between individual performance on the set of 

items whose content was strongly related to logic and individual 

performance on the set of items whose content was not strongly related to 

logic?

Both of these research questions were informed by development o f simple 

descriptive statistics (mean and standard deviation) describing the performance on 

each partition. The cumulative score on each partition of items was rescaled to 

reflect the proportion of correctly answered items in the partition. This allowed 

comparison of performance under each of the partitioning algorithms, across the 

examination packets, and within each of the five samples.

Question (b) was addressed in terms of the difficulty distribution of the 

items in each partition. The operational definition for item difficulty was based 

on the proportion of students who answered the item correctly. Five mutually 

exclusive categories of difficulty were defined in terms of the proportion of 

respondents who answered correctly: ‘very difficult’ for the interval [.0, .2), 

‘somewhat difficult’ for the interval [.2, .4), ‘average’ for the interval [.4, .6) 

‘somewhat easy’ for the interval [.6, .8), and ‘very easy’ for the interval [.8,1.0]. 

Every test item was assigned to exactly one of these five categories. The null 

hypothesis was then stated as:
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Hj: The difficulty distributions for the partitions of items strongly related and 

not strongly related to logic are the same.

To test this hypothesis, a 5X2 table was created in which the rows reflected the 

difficulty categories, the columns represented the strongly related and n o t  

strongly related partitions, and the value in each cell was the number of items that 

fit the corresponding row/category criteria. The difficulty distributions defmed by 

the two sets of items were graphed and tested for differences using a hierarchical 

log-linear test of homogeneity. This analysis was carried out for the item 

partitions as defined under both the liberal and the conservative partitioning 

algorithms.

Research question (c) was addressed by considering the null hypothesis:

H 2 : The correlation between individual performance on items in the strongly 

related partition and items in the not strongly related partition is zero.

To test this hypothesis, the Pearson product-moment coefficient of correlation was 

calculated, treating individual cumulative score on items in the strongly related 

partition as the first variable and individual cumulative score on items in the not 

strongly related partition as the second variable. Correlation coefficients were 

developed for the partitions defined under both the liberal and the conservative 

partitioning algorithms. To aid in interpreting the correlation coefficients, the 

coefficient o f determinacy was calculated, which allowed consideration of the 

shared variance between the two variables.
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Chapter 4 begins with a description of the source from which the test items 

were taken, the Advanced Placement Examinations in Computer Science (APCS 

examinations). Brief background on the composition of each examination and the 

associated performance statistics is provided. The outcome of the content 

analysis procedure is considered from several points of view: the instruments 

under study (i.e., the APCS examinations), the judges, the partitioning of the 

multiple-choice items, and the reliability of the content analysis results. The next 

section presents the results of hypothesis testing for the null hypotheses defined in 

Chapter 3. Chapter 4 closes with a summary of the research questions and 

findings.

4.1 S o u r c e  o f  t e s t  I t e m s : T h e  APCS E x a m in a t io n s

4.1.1 Composition of the APCS Examinations

The 1984 APCS examination was the first offering of an Advanced 

Placement examination for the subject area computer science; it included 44 

multiple-choice items and five free-response items. The 1988 and 1992 APCS 

examinations were each administered in two different versions, A and AB. The A 

version for both years covered the concepts of the first computer science course 

(CS1 in Austing, 1979 and Koffman, Miller, & Wardle, 1984) while the AB 

version also covered the concepts of the second course (CS2 in Austing, 1979 and 

Koffman, Stempel, & Wardle, 1985). Version A of the 1988 APCS examination 

was a simple subset of the AB version: it encompassed the first 35 multiple-

73
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choice items from the AB examination and the first three free-response items from 

the AB examination. Version AB of the 1988 examination included a total o f SO 

multiple-choice items and five free-response items. In 1992, the A and AB 

versions of the APCS examination were distinct (although not disjoint), once 

again with the A version at the CS1 level and the B version at the CS2 level. The 

two versions of the 1992 examination shared IS multiple-choice items and two 

free-response items, with a total o f 40 multiple-choice items and five free- 

response items on each version.

4.1.2 Performance Statistics

The data reported here are based on files received from Educational 

Testing Service (ETS). These files included anonymous individual performance 

and demographic data for all candidates taking the five examinations under 

consideration. In the official ETS reports (College Board, 1986, 1989, 1993), the 

statistics for the 1984, 1988, and 1992 examinations were based on only 

respondents for whom the examination was fully graded before pre-publication 

analyses were carried out. A small number of respondents were added to the data 

set after the official ETS reports were published. As a result, in some cases the 

total number of respondents reported in this research exceeds the number of 

respondents reported in the official ETS reports (by 22 and one respectively on 

the A and AB versions of the 1988 examination and by two on the A version of 

the 1992 examination).
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Based on the information in the individual data files from ETS, Tables 4.1 

and 4.2 summarize the descriptive statistics for each of the five samples of 

students who took the APCS examinations. Table 4.1 shows the number of 

multiple-choice items answered correctly, while Table 4.2 reports the number of 

multiple-choice items attempted. The descriptive statistics include the number of 

items under consideration on each examination, the mean value of the variable

Table 4.1 Summary Statistics for Number of Multiple-Choice Items Answered 
Correctly on Each APCS Examination

examination
#  o f multiple - 
choice items

minimum #  
correct

maximum #  
correct mean

standard
deviation N

1984 44 3 44 25.59 8.23 4227
1988A 35 1 34 12.96 5.25 3369

1988AB 50 1 49 26.20 8.75 7375
1992A 40 2 40 19.73 7.26 5231

1992AB 40 0 40 21.74 7.65 4658

Table 4.2 Descriptive Statistics for Number of Multiple-Choice Items Attempted 
on Each APCS Examination

examination
# o f multiple- 
choice items

minimum #  
attempted

maximum #  
attempted mean

standard
deviation N

1984 44 8 44 41.28 3.73 4227
1988A 35 5 35 27.06 5.44 3369

1988AB 50 5 50 42.24 6.37 7375
1992A 40 6 40 35.04 4.97 5231

1992AB 40 0 40 34.41 5.40 4658

Table 4.3 Rescaled Descriptive Statistics for Number of Multiple-Choice Items 
Answered Correctly and Number of Multiple-Choice Items Attempted on Each 
APCS Examination

APCS
exam

mean proportion 
o f items 

answered correctly

standard deviation of  
proportion of items 
answered correctly

mean proportion 
of items 

attempted

standard deviation 
of proportion o f  
items attempted

1984 0.58 0.19 0.94 0.08
1988A 0.37 0.15 0.77 0.16

1988AB 0.52 0.18 0.84 0.13
1992A 0.49 0.18 0.88 0.12

1992AB 0.54 0.19 0.86 0.14
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(i.e., either number correct or number attempted) across all respondents, the 

standard deviation, the range (minimum and maximum values), and the number of 

respondents in the sample. Table 4.3 presents the means and standard deviations 

from Tables 4.1 and 4.2 rescaled to the range [0.0,0.1].

Two different views of performance can be developed from this 

information: (1) the proportion of respondents from the total sample who 

answered each item correctly and (2) the proportion of respondents who answered 

each item correctly among those who attempted the item. Each view has certain 

advantages; the research reported here used the first figure. This choice was made 

for two reasons: (a) analyses for a particular examination were based on a 

constant sample size across all items from that examination and (b) the fact that an 

item was not attempted provided information about the perceived difficulty of the 

item. In contrast, ETS used the second view of performance, the proportion of 

respondents who answered the item correctly among those who attempted the 

item. Because ETS assesses a “guessing penalty" on the multiple-choice section, 

many students undoubtedly skipped items about which they were unsure in order 

to avoid losing points. In addition, since each section of the examination was 

given during a fixed period of time, some students may have run out of time 

before completing all items on a section. Thus, students who worked more slowly 

may not have had sufficient time to answer some items even though in other 

circumstances they could have answered correctly. The second view takes this 

time constraint into consideration.
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4.2 Content  A nalysis Procedure Results

The outcome of the final phase of the content analysis procedure is 

reported in this section. A pilot phase was also run; these results will be discussed 

as appropriate.

4.2.1 The instruments under study

The final content analysis procedure considered four distinct examination 

packets: 1984, 1988, 1992A, and 1992B. Although the 1988 examination was 

administered in two versions to two different samples of students, the multiple- 

choice section of version A of the 1988 examination was a subset of the items 

from version AB (i.e., 35 of 50 items appeared on both the A and AB versions). 

As a result, the content analysis procedure considered only the AB examination 

packet for 1988. On the 1992 examination, 15 items on the A and AB versions 

were identical; the packets were not modified to remove this redundancy.

The four examination packets included a total of 174 multiple-choice 

items. Eliminating the second occurrence of the 15 duplicate items from the 1992 

examination (i.e., counting each one only once) resulted in a total of 159 distinct 

multiple-choice items that were considered in the final phase. The pilot phase of 

the content analysis procedure used only the 1984 and 1988 APCS examinations, 

for a total of 94 multiple-choice items.

4.2.2 The judges

The final content analysis procedure was completed by 38 computer 

science educators during the period from June through November, 1993. Two of 

the judges did not rate the items from the 1988 examination, so the number of
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judges for the 1988 APCS examination was 36. Of these judges at the time of the 

content analysis:

• 10 were high school teachers

• 25 were instructors at a college or university

• 6 had completed the rating task during both the pilot and final phases

• 21 had served as readers in grading the 1992 APCS free-response items

• 11 had participated in an NSF-sponsored workshop on the use of formal 

methods in the undergraduate curriculum during summer 1993

• several had written introductory textbooks on various subjects in the field 

of computer science

• two had been recognized as “Outstanding Educator of the Year” by the 

Association for Computing Machinery’s Special Interest Group on 

Computer Science Education (ACM SIGCSE)

• one had received the Turing Award, the highest honor available in the 

computing field (considered analogous in prestige to the Nobel Awards)

4.2.3 Partitioning the items during the final phase

A key goal of this study was to contrast performance on items judged to 

have a strong relationship to the subdomain of logic with performance on items 

that were judged to have little or no relationship to logic. During the final phase 

of the procedure, each judge rated each item with one of four categories that 

indicated the perceived strength-of-relationship between the concepts covered by 

the item and the concepts of logic. The categories were ‘main concept’, ‘vital 

subconcept’, ‘trivial subconcept’, and ‘not used’. A rating of ‘main concept’ or
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‘vital subconcept’ for an item indicated that the judge perceived logic to be an 

important aspect of that item; a high occurrence of these two categories caused the 

item to be assigned to the strongly related partition. Similarly, ‘trivial 

subconcept’ and ‘not used’ indicated a perceived unimportance of the concepts of 

logic in the context of the item; a high occurrence of these two categories caused 

the item to be assigned to the not strongly related partition.

Two different algorithms were used in creating the partitions of items. 

The liberal partitioning algorithm classified an item as strongly related if at least 

50% of the judges had rated the item ‘main concept’ or ‘vital subconcept’ and as 

not strongly related otherwise. Under the liberal partitioning algorithm, all items 

fell into one of the two partitions. The conservative partitioning algorithm used 

stricter criteria for assigning items to partitions, with the result that a number of 

items were excluded from consideration during further analysis. In the 

conservative algorithm, an item was classified as strongly related if 75% or more 

of the judges had rated the item ‘main concept’ or ‘vital subconcept’. In order to 

be put in the not strongly related partition under the conservative algorithm, at 

least 75% of the judges must have rated the item as ‘trivial subconcept’ or ‘not 

used’. Table 4.4 summarizes the number of items in each partition under the two 

partitioning algorithms for each of the five examination versions. Appendix F 

presents the detailed results from the content analysis judging, including the 

number of judges who chose specific categories for each item and the assignment 

of individual items to partitions under both the liberal and conservative 

partitioning algorithms.
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Sample APCS examination items are given in Figures 4.1 through 4.4. 

Figures 4.1 and 4.2 show items that 37 out of 38 judges (97%) rated as either 

‘main concept’ or ‘vital subconcept’; these items were assigned to the strongly 

related partition under both the liberal and the conservative partitioning 

algorithms. Figure 4.3 shows an item that 74% of the judges rated as either ‘main 

concept’ or ‘vital subconcept’; this item was assigned to the strongly related 

partition under the liberal partitioning algorithm but was eliminated from 

consideration under the conservative partitioning algorithm. Figure 4.4 shows an 

item that only one out of 38 of the judges (3%) rated as either ‘main concept’ or 

‘vital subconcept’; this item was assigned to the not strongly related partition 

under both the liberal and the conservative partitioning algorithms. Appendix G 

presents the 22 multiple-choice items that were classified as strongly related 

under the conservative partitioning algorithm.

Table 4.4 Summary of Number of Items in Each Partition under Each 
Partitioning Algorithm for Each APCS Examination

APCS 
examination 
and version

liberal partitioning algorithm conserva ive nartitionine algorithm
strongly
related

not strongly 
related

total # of 
items

strongly
related

not strongly 
related

total # of 
items

1984 10 34 44 4 30 34

1988A 11 24 35 4 17 21

1988AB 14 36 50 5 29 34

1992A 16 24 40 8 13 21

1992AB 14 26 40 9 18 27

Note: The A version of the 1988 examination consists of the first 35 multiple-choice items
from the AB version of the 1988 examination.
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Consider the following program fragment: 
i  := 1 }
w h ile  ( i  <= Max) and ( S t r in g f i ]  <> Sym bol) jJq i  := i  + 1

Which of the following is a loop invariant for the w hile loop above; i.e., which is t ru e  each time 
the w hile-condition is tested?

(A) i  = Max

(B) i  = i  + 1

(C) S t r i n g [ j ]  = Sym bol for all j  such that i  < j

(D) S t r i n g f j ]  & Sym bol for all j  such that i  £  j

(E) S t r in g !  j ]  & Symbol for all j  such that 1 £  j  < i____________________________

Note: Appeared as item 42 on the 1984 APCS examination; Correct response is (E); From The 
Entire 1984 AP Computer Science Examination and Key, College Entrance Examination 
Board, 1986, p. 27. Adapted by permission.

Figure 4.1 Sample Multiple-Choice Item, Rated Strongly Related by 37 of 38 
Judges (97%)

Evaluation of the B oolean  expression
{( i  <= n) and (a l i i  = 0)) qx. (<i >= n) and (a[ i  - 1] = 0)) 

is guaranteed to cause a run-time error under which of the following conditions?

(A) i  < 0

(B) Neither a [ i]  nor a [ i  -  1] has the value zero.

(C) Array a is of size n.

(D) Array a is of size 2.

(E) None of the above_________________________________________________________

Note: Appeared as item 27 on version A and as item 17 on version AB of the 1992 APCS
examination; Correct response is (E); From The 1992 Advanced Placement Examinations 
in Computer Science and their grading, College Entrance Examination Board, 1993, pp. 
27 & 63. Adapted by permission.

Figure 4.2 Sample Multiple-Choice Item, Rated Strongly Related by 37 of 38 
Judges (97%)
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The purpose of a subprogram's precondition is to

(A) initialize the local variables of the subprogram

(B) describe the conditions under which the compiler is to abort compilation

(Q describe the conditions under which the subprogram may be called so that it satisfies its 
postcondition

(D) describe the algorithm used by the subprogram

(E) describe the effect(s) of the subprogram on its postcondition

Note: Appeared as item 4 on version AB of the 1992 APCS examination; Correct response is
(E); From The 1992 Advanced Placement Examinations in Computer Science and their 
grading, College Entrance Examination Board, 1993, p. 54. Adapted by permission.

Figure 4.3 Sample Multiple-Choice Item, Rated Strongly Related by 26 of 38 
Judges (74%)

A standard Pascal compiler runs on several different types of computers, ranging from 
microcomputers to mainframes. For this compiler, which of the following might be different on 
the different machines?

L The value of maxint

n. The number of reserved words

m. The maximum size of a set

(A) I only

(B) in only

(C) I andll

(D) I and in
(E) nandm

Note: Appeared as item 7 on both version A and AB of the 1992 APCS examination; Correct 
response is (D); From The 1992 Advanced Placement Examinations in Computer Science 
and their grading. College Entrance Examination Board, 1993, pp. 10 & 55. Adapted by 
permission.

Figure 4.4 Sample Multiple-Choice Item, Rated Strongly Related by 1 of 38 
Judges (3%)
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4.2.4 Content analysis reliability results

The content analysis reliability procedures were run for each of the four 

examination packets. For each packet, these calculations resulted in an overall 

reliability value, a single category reliability value for each of the four 

classification categories, and individual judge reliability.

4.2.4.1 Overall reliability

In producing the overall reliability figures two different models were 

considered, the four-category model and the two-categoiy model. In the four- 

category model, the distinct classification categories were maintained, giving the 

categories ‘main concept’, ‘vital subconcept’, ‘trivial subconcept’, and ‘not used’. 

The two-category model was based on two collapsed categories: the classification 

categories ‘main concept’ and ‘vital subconcept’ became the single collapsed 

category strongly related, while the classification categories ‘trivial subconcept 

and ‘not used’ became the single collapsed categoiy not strongly related.

The agreement coefficients for the overall reliability of the content 

analysis results are given in Table 4.5. Comparing the four-category and two-

Table 4.5 Agreement Coefficients Showing Overall Reliability of the Content 
Analysis of the APCS Examinations

APCS
examination

liberal narlitionine algorithm conservative nartitionine aleorithm
with all four 
categories

with collapsed 
categories

with all four 
categories

with collapsed 
categories

1984 0.325 0.458 0.290 0.473
1988 A &AB 0.310 0.434 0.303 0.496

1992A 0.317 0.405 0.458 0.704
1992AB 0.340 0.494 0.391 0.694
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category models, the two-category interpretation consistently resulted in much 

higher agreement. The conservative partitioning algorithm also tended to result in 

higher agreement than did the liberal partitioning algorithm. The higher 

agreement in the conservative partitioning algorithm can be explained by the fact 

that “noisy” items were eliminated from consideration. The best reliability was 

for both versions of the 1992 examination using the two-category model and the 

conservative partitioning algorithm; here the agreement coefficient was .70, while 

for the 1984 and 1988 examinations the reliability under this same combination 

was less than .50.

4.2.4.2 Single category reliability

Single category reliability indicates the extent to which a category tends to 

distinguish itself from the other categories. A low agreement coefficient for a 

particular category means that judges tended to confuse that category with the 

remaining categories.

Table 4.6 gives the agreement coefficients for the four classification 

categories under both partitioning algorithms. The categories ‘vital subconcept*

Table 4.6 Agreement Coefficients for Single Category Reliability of the Final 
Phase of the Content Analysis of the APCS Examinations

APCS
examination

liberal aleorithm conservative aleorithm
main

concept
vital

subconcept
trivial

subconcept
not
used

main
concept

vital
subconcept

trivial
subconcept

not
used

1984 0.331 0.199 0.119 0.527 0.415 0.156 0.130 0.419
1988 0.292 0.201 0.105 0.518 0.421 0.198 0.116 0.434

1992A 0.457 0.132 0.148 0.533 0.645 0.161 0.164 0.602
1992AB 0.630 0.145 0.160 0.451 0.704 0.101 0.147 0.452
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and ‘trivial subconcept’ tended to be highly unreliable, with agreement 

coefficients that were at most .20. The ‘not used’ category had the highest 

reliability, with agreement coefficients ranging from .45 to .53 when considering 

the partitions defined by the liberal algorithm (which included all items) and from 

.42 to .60 when considering the partitions defined by the conservative algorithm 

(which included a reduced set of items). The ‘main concept’ category was 

relatively reliable, with a range of .29 to .63 for the agreement coefficient when 

considering the partitions defined by the liberal algorithm and from .41 to .70* 

when considering the partitions defined by the conservative algorithm.

During the pilot phase, the classification system was composed of four 

categories that were unordered: ‘direct relationship’, ‘vital subconcept’, ‘parallel 

concept’, and ‘not related’. After the classification system was refined for use in 

the final phase, the new set of categories were ordered along a scale that ranged 

from ‘main concept’ as the most strongly related category, moving down the scale 

to ‘vital subconcept’, then to ‘trivial subconcept’, and, at the bottom of the scale, 

‘not used’. Krippendorff (1980, p. 151) maintained that single-category reliability 

can only be applied to unordered categories. However, because the single­

category reliability results obtained here are fully interpretable, this restriction 

seems unnecessary.

4.2.4.3 Individual judge reliability

Individual judge reliability indicates the extent to which an individual 

judge was the source of unreliable data (Krippendorff, 1980). Differences among 

judges can be explained by work style (e.g., organized, neat, hurried), in
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understanding of the instructions, in consistency of understanding of the concepts

under consideration, and in the way the items themselves are perceived.

Judge reliability was calculated as the agreement between a particular

judge and the pooled set of all other judges. Appendix H presents an overview of

individual reliability results for the final phase o f the content analysis procedure.

Generally, individual judge reliability was much higher under the conservative

partitioning algorithm than under liberal partitioning algorithm. This difference

was fairly insignificant for the 1984 examination, but was pronounced for the

1988 and 1992 examinations.

An important issue relates to “outliers”: should judges whose individual

reliability deviated greatly from that of the other judges have been eliminated

from further consideration? As Krippendorff (1980) points out, this practice

needs to be treated with caution:

[A] practice, assertedly aimed at bypassing problems of 
unreliability, is to take averages or majority judgments as true 
values whenever disagreements among independent observers are 
encountered. Such data do contain evidence about reproducibility 
before the “undesirable” variance is eliminated. But, since 
disagreement implies nothing about who is right and who is wrong, 
neither the mean nor the mode has the wisdom required to improve 
data reliability by computational means. An even more deceptive 
practice is to admit only those data to an investigation on which 
independent coders achieve perfect agreement. The bias here is 
two-fold. The procedure does not prevent chance agreements from 
entering the data ... and it biases the data toward what is easily 
codable. (p. 132)

However, Krippendorff does concede that, if a particular judge proves to be very 

unreliable, the data contributed by that judge “could be removed, checked, or 

recoded by the other ... coders [and] data reliability would improve ...” (p. 150). 

The decision in this study was to retain all judges.
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4.2.4.4 Test-retest results fo r  items common to A  and A B  versions

Several items appeared on both the A and AB versions of the 1988 and 

1992 APCS examinations. In 1988, the two versions of the examination had 35 

multiple-choice items in common, while in 1992 the two versions had 15 

multiple-choice items in common.

In the content analysis procedure, the items for both versions of the 1988 

examination were judged in a single packet, where the first 35 multiple-choice 

items made up the A version and an additional 15 items completed the AB 

version. As a result, each duplicate item on the 1988 examination was considered 

only once in judging, as part of the 1988 examination packet. In contrast, the 

1992 examination was judged in two separate packets, one for each of the two 

versions. This meant that, for each of the 15 duplicate items, judges were in 

essence asked to rate the item twice. This provided an opportunity to consider 

test-retest stability in the use of the classification system.

When the results of the content analysis are viewed in terms of proportion 

of judges agreeing On the assignment to partitions, it is possible to associate with 

each item a value in the range [0.0, 1.0], a scale for the “judged relationship to 

logic". On this scale, a value of 1.0 would mean that all of the judges agreed that 

the item belonged in the strongly related partition while a value of 0.0 would 

indicate that all of the judges agreed that the item belonged in the not strongly 

related partition. Table 4.7 shows the duplicate items from the 1992 examination 

sorted in decreasing order according to judged relationship to logic on the AB 

version o f the examination. For each duplicate item and both versions of the
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Table 4.7 Comparison of Content Analysis Ratings on Duplicate Items from A 
and AB Versions of the 1992 APCS Examination

item
judged relationship 

to logic 
for A-version

judged relationship 
to logic 

for AB-version

item #  on A - . 
version o f 1992 

examination

item # on AB- 
version o f 1992 

examination
1 1.00 1.00 1992A-32 1992B-21
2 1.00 1.00 1992A-26 1992B-16
3 0.97 0.97 1992A-27 1992B-17
4 1.00 0.95 1992A-31 1992B-18
5 0.74 0.68 1992A-08 1992B-04
6 0.74 0.68 1992A-20 1992B-06
7 0.42 0.34 1992A-29 1992B-29
8 0.42 0.32 1992A-10 1992B-I0
9 0.39 0.32 1992A-09 1992B-09
10 0.29 0.29 1992A-05 1992B-05
11 0.03 0.03 1992A-07 1992B-07
12 0.08 0.11 1992A-02 1992B-02
13 0.08 0.08 1992A-28 1992B-28
14 0.05 0.05 1992A-37 1992B-37
15 0.05 0.05 1992A-38 1992B-38

Note: Items are sorted according to “judged relationship to logic” on AB version; on this scale, 
1.0 means all judges agreed the item belonged in the strongly related partition; 0.0 means 
that all judges agreed the item belonged in the not strongly related partition

examination, the agreement value and the associated item number is given. Based 

on the criteria defined by the liberal and conservative partitioning algorithms, 

each of these IS items was assigned to the same partition for both versions of the 

examination.

Differences in rating the same item on the two different versions could 

indicate any of several phenomena, including problems with the classification 

system, changes in the judges’ perceptions as they proceeded through the rating 

task, and the influence that the order in which the examinations were considered
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on classification results. Some judges reported that they recognized the item 

repetition and attempted to achieve consistency between versions. For a fully 

accurate indication of consistency in using the classification system, a judge 

would have to had to rate each duplicate item on the two versions o f the 

examination without cross-referencing. Because, by their own admission, several 

judges did do cross-referencing as they noticed duplicate items, the consistency 

figures are inflated. However, even with cross-checking, none of the 38 judges 

succeeded in rating all 15 items consistently. This shows that various factors 

must have influenced the choice of categories from one packet to the other. 

Appendix I profiles details of the ratings, both in terms of how consistently each 

judge rated the 15 items and in terms of how consistently each of the 15 items 

were rated by the 38 judges.

4.3 Research  Q uestions and Hypothesis Testing

Based on the rating results from the content analysis procedure and the 

data from ETS, the answers to the research questions posed at the end of 

Chapter 1 can now be considered.

4.3.1 Descriptive statistics for performance differential between partitions

The research question that drove the design of the methodology used in 

this study was:

(a) Can a procedure be developed for reliable and valid classification of 

content-area test items according to their degree of relationship to a pre­

defined set of logic concepts?
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The positive answer to this question was based on the successful implementation 

of the content analysis procedure and the ability to generate meaningful partitions 

of strongly related and not strongly related items.

Tables 4.8 through 4.10 report descriptive statistics for each of the five 

samples that took the APCS examinations. Table 4.8 summarizes the statistics for 

the full set of multiple-choice items for each sample, while Table 4.9 describes the 

partitions defined under the liberal partitioning algorithm and Table 4.10 

considers the partitions defined under the conservative partitioning algorithm. In 

each of the tables and for each partition, the following statistics are given: the 

number of items, the average proportion of respondents who correctly answered 

the items in that partition, and the standard deviation of the proportion of 

respondents who correctly answered the items in that partition. In order to 

compare performance across partitions, Tables 4.9 and 4.10 also report a “delta” 

for the mean and a “delta” for the standard deviation of the two partitions for each 

of the five samples. In each case, the delta value was calculated as the difference 

between corresponding values for the strongly related partition and the n o t 

strongly related partition. A negative delta value indicates that the value in the

Table 4.8 Number of Multiple-Choice Items plus Mean and Standard Deviation 
of Proportion Answering Correctly for All Examinations

number 
of items

mean
proportion
answering
correctly

standard deviation 
of proportion 

answering 
correctly

1984 44 0.58 0.19
1988 version A 35 0.37 0.15

1988 version AB 50 0.52 0.18
1992 version A 40 0.49 0.18

1992 version AB 40 0.54 0.19
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strongly related partition was less than the corresponding value in the not strongly 

related partition.

The general trend that emerged was that the strongly related partitions had 

lower means and smaller standard deviations than the corresponding not strongly 

related partitions had. One exception to this was the 1984 sample, where under 

both the liberal and the conservative partitioning algorithms, the standard 

deviation of the strongly related partition was larger than the standard deviation 

of the not strongly related partition. The other exception to this trend was for the 

partitions defined by the liberal partitioning algorithm for both versions of the 

1992 examination. On both the A and AB versions in 1992, the mean proportion 

of respondents answering correctly was higher for the strongly related partition 

than for the not strongly related partition. However, the standard deviation of the 

strongly related partition was still smaller for this case.

4.3.2 Differences in difficulty distribution between partitions

Research question (b) asked: In considering student performance on the 

test items, was the distribution of performance different for items whose content 

was strongly related to logic than for items whose content was not strongly related 

to logic? This question was tested using the following null hypothesis:

Hj: The difficulty distributions for the partitions of items strongly related and

not strongly related to logic are the same.

In testing this hypothesis, the analysis considered one dependent variable 

and two independent variables. The dependent variable was the number of items 

in each partition. The first independent variable was the artificial dichotomy that
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Table 4.9 Number of Multiple-Choice Items, Mean and Standard Deviation of 
Proportion Answering Correctly, and Delta for Mean and Standard Deviation 
under Liberal Partitioning Algorithm

examination partition

number
of

items

mean
proportion
answering
correctly

standard dev. 
of proportion 

answering 
correctly

delta
for

mean

delta
for

standard
dev.

1984 strongly related 10 0.56 0.25
-.03 +.10not strongly related 34 0.59 0.15

1988 version A strongly related 11 0.30 0.11
-.10 -.14not strongly related 24 0.40 0.25

1988 version AB strongly related 14 0.46 0.13
-.09 -.12not strongly related 36 0.55 0.25

1992 version A strongly related 16 0.50 0.16
+.01 -.07not strongly related 24 0.49 0.23

1992 version AB strongly related 14 0.56 0.18
+.02 -.03not strongly related 26 0.54 0.21

Table 4.10 Number of Multiple-Choice Items, Mean and Standard Deviation of 
Proportion Answering Correctly, and Delta for Mean and Standard Deviation 
under Conservative Partitioning Algorithm

examination partition

number
of

items

mean
proportion
answering
correctly

standard dev. 
of proportion 

answering 
correctly

delta
for

mean

delta
for

standard
dev.

1984 strongly related 4 0.42 0.26
-.18 +.11not strongly related 30 0.60 0.15

1988 version A strongly related 4 0.33 0.08
-.11 -.19not strongly related 17 0.44 0.27

1988 version AB strongly related 5 0.48 0.11
-.09 -.14not strongly related 29 0.57 0.25

1992 version A strongly related 8 0.39 0.09
-.08 -.17not strongly related 13 0.47 0.26

1992 version AB strongly related 9 0.48 0.13
-.05 -.05not strongly related 18 0.53 0.18
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divided the items into the strongly related and not strongly related partitions. The 

second independent variable stratified the items according to difficulty. The 

operational definition for difficulty of an item depended on the proportion of 

students who correctly answered the item. The categories of difficulty, which 

were mutually exclusive, were defined in terms of the proportion of respondents 

who answered correctly: ‘very difficult’ for the interval [.0, .2), ‘somewhat 

difficult’ for the interval [.2, .4), ‘average’ for the interval [.4, .6) ‘somewhat easy’ 

for the interval [.6, .8), and ‘very easy’ for the interval [.8,1.0].

Because the number of items in some categories was so small, the results 

from the five examinations were pooled for this analysis. Table 4.11 presents the 

number of items at each level of difficulty in each partition under the liberal 

partitioning algorithm. Figure 4.3 presents the same data in the form of a graph, 

where the x-axis is the difficulty category and the y-axis is the proportion of items 

that fell into a partition; the difficulty distribution for each partition is plotted as a 

line. Table 4.12 and Figure 4.6 present the same information for the partitions 

defined by the conservative partitioning algorithm.

To test whether the strongly related and not strongly related partitions 

were homogeneous with respect to the five levels of item difficulty, hierarchical 

log-linear tests of homogeneity were run on the data in Tables 4.11 and 4.12. An 

important consideration in using this test was the number of cells in the 5X2 table 

for which there was no item. When this occurs, the empty cells are accidents of 

the sampling procedure, known as random zeroes. When random zeroes are 

sufficiently prevalent, they can prevent completion of the log-linear test of fit
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(Wickens, 1989). In this study, only one random zero occurred and the log-linear 

tests of fit could be calculated.

The test of fit under the liberal partitioning algorithm resulted in 

G2 = 9.081, with 4 df; because p  = .06, the null hypothesis was not rejected. 

Under the conservative partitioning algorithm, the test of fit resulted in 

G2 = 17.507, with 4 df; because p  <  .002, the null hypothesis was rejected. The 

conclusion was that the difficulty distributions of the strongly related and not 

strongly related partitions were not homogeneous under the conservative 

algorithm.

In the definition of the difficulty categories, the choice of range intervals 

was somewhat arbitrary. During the planning phase, the difficulty categories 

‘very difficult’, ‘somewhat difficult’, ‘average’, ‘somewhat easy’, and ‘very easy’ 

were defined to correspond to the intervals [.0, .2), [.2, .4), [.4, .6), [.6, .8), and 

[.8, 1.0], respectively. As the analysis was being carried out, the investigator 

noticed that several of the proportions were borderline cases. In order to weigh 

the effect of the boundary definition, hypothesis H] was also tested using the 

difficulty intervals [.0, .2], (.2, .4], (.4, .6], (.6, .8], and (.8, 1.0]. For these data 

sets, the difference under the conservative partitioning algorithm was negligible: 

The test of fit resulted in G2 = 17.319, with 4 df; again this resulted in p  < .002 

and the null hypothesis was rejected. The difference under the liberal partitioning 

algorithm was more pronounced. The test of fit resulted in G2 = 9.86540, with 4 

df; in this case p  <  .05 and the null hypothesis could be rejected. It seems 

doubtful that this difference is inherent in the definition of the difficulty intervals, 

but rather that it is a phenomenon associated with this particular data set.
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Inspection of both Figure 4.5 and Figure 4.6 reveals that the skew of the 

difficulty distribution for the strongly related items is towards the “very difficult” 

end of the scale while the difficulty distribution for not strongly related  

distribution has more of a bell shape. Because the distributions under the 

conservative partitioning algorithm were non-homogeneous, this difference leads 

to the conclusion that the strongly related items were, in general, more difficult 

than the not strongly related items. Based on the alternative definition of 

difficulty in the preceding paragraph, it can be argued that even under the liberal 

partitioning algorithm the strongly related items were generally more difficult 

than the not strongly related items.

4.3.3 Correlation between number correct in partitions

Research question (c) asked: Was there a relationship between individual 

performance on the set of items whose content was strongly related to logic and 

the set of items whose content was not strongly related to logic? The following 

null hypothesis was tested:

H2 : The correlation between individual performance on items in the strongly 

related partition and items in the not strongly related partition is zero.

In testing this hypothesis, the two partitions of items were treated as distinct 

subtests. Pearson’s product-moment correlation was calculated for the pair of 

values that were the cumulative scores for the strongly related and not strongly 

related partitions. The correlation coefficient was developed under both the 

liberal and the conservative partitioning algorithms for each of the five samples
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Table 4.11 Number and Proportion of Items at Each Difficulty Level in the 
Strongly Related and Not Strongly Related Partitions under the Liberal 
Partitioning Algorithm

strongly related 
partition

not strongly 
related partition totals:

very difficult 3 13 16

somewhat d ifficult 18 31 4 9

average difficulty 29 4 2 71

somewhat easy 10 4 0 5 0

very easy 5 18 23

totals: 65 144 2 09

♦ proportion of items in ------ proportion of items in "not
"strongly related" partition strongly related" partition
(N = 65) (N = 144)

_  O 0.60 T
I mo -

very easy somewhat average somewhat very
easy difficult difficult

difficulty of item

Figure 4.5 Difficulty Distribution of Items in the Strongly Related and Not 
Strongly Related Partitions under the Liberal Partitioning Algorithm, With Items 
Pooled across All Examinations
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Table 4.12 Number and Proportion of Items at Each Difficulty Level in the 
Strongly Related and Not Strongly Related Partitions under the Conservative 
Partitioning Algorithm

strongly related 
partition

not strongly 
related partition totals:

very difficult 1 9 10
somewhat difficult 10 20 30
average difficulty 16 33 49

somewhat easy 3 29 32
very easy 0 16 16

totals: 30 107 137

proportion of items in 
"strongly related" partition 
(N = 30)

proportion of items in "not 
strongly related" partition 
(N = 107)

o 0.60 T

S 2 0.40 • •

0.20 ; •

0.00
very easy somewhat average somewhat very

easy difficult difficult

difficulty of item

Figure 4.6 Difficulty Distribution of Items in the Strongly Related and Not 
Strongly Related Partitions under the Conservative Partitioning Algorithm, With 
Items Pooled across All Examinations
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(1984, 1988 version A, 1988 version AB, 1992 version A, and 1992 version AB). 

In addition, the coefficient of determination was calculated from each correlation 

coefficient; this value is the square of the correlation coefficient and is used to 

describe the shared variance in the two-score distribution.

Table 4.13 reports the correlation coefficients and coefficients of 

determination for the five samples. Several factors influence the value of the 

correlation coefficient; these will be considered in the context of this study. First, 

as the number of items per subtest increases the possible variation of the scores 

increases and, in turn, the correlations tend to be higher. Here, the subtests 

defined under the liberal partitioning algorithm had more items than the analogous 

subtests under the conservative algorithm; the correlations under the liberal 

partitioning algorithm were consistently larger than the correlations under the 

conservative partitioning algorithm. Second, as samples become more 

homogeneous, the possible variation in scores becomes smaller; as a result, 

correlations tend to be lower for homogeneous samples. In this study, the only 

instance where a sample was reported to be more homogeneous was for version 

AB of the 1992 examination. This increased homogeneity was because two 

distinct examinations were given in 1992 rather than a two-section AB version as 

in 1988 or a single examination as in 1984 (R. Morgan, personal communication, 

April 14, 1994). In spite of the increased homogeneity, the correlation 

coefficients for the sample that took version AB of the 1992 examination were 

among the highest under both partitioning algorithms.
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A factor that could have influenced the value of the correlation coefficient 

was the effect of removing items from consideration under the conservative 

partitioning algorithm. In a sense, the eliminated items had something in common 

with one another, perhaps to the extent that they were measuring some of the 

same abilities. This reasoning leads to the conclusion that the higher correlations 

between the partitions defined by the liberal partitioning algorithm could have 

been due in part to the inclusion of the “mid-range” items (i.e., those items for 

which only 25% to 75% of the judges agreed about the relationship).

As sample size increases, the correlation coefficient becomes more 

reliable. In fact, for very large N, very small correlation coefficients can be 

statistically significant. In this study, the sample sizes were very large, ranging 

from 3,369 to 7,375. As expected, all correlation coefficients were significant at 

p < .01. These results lead to the conclusion that null hypothesis H2 should be 

rejected in all cases. Thus, there is a relationship between performance on items 

in the strongly related partition and performance on items in the not strongly 

related partition under both partitioning algorithms.

Table 4.13 Correlation between Number Correct in the Strongly Related and Not 
Strongly Related Partitions under Both Partitioning Algorithms

APCS
examination

liberal nartitioninc aleorithm conservative nartitioninc aleorithm
correlation
coefficient

coefficient of 
determination

correlation
coefficient

coefficient of 
determination

1984 .74 .55 .60 .36
1988A .60 .36 .42 .18

1988AB .75 .56 .60 .36
1992A .74 .55 .56 .31

1992AB .75 .56 .64 .41
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The shared variance between the strongly related and not strongly related 

subtests, indicated by the coefficients of determination, was over 50% under the 

liberal algorithm for the samples taking the 1984 examination, the AB version of 

the 1988 examination, and both versions of the 1992 examination. Under the 

liberal partitioning algorithm for the 1988 examination, only 36% of the variance 

was shared by the two subtests. Under the conservative partitioning algorithm, 

the shared variance was highest for version AB of the 1992 examination, at 41%. 

For version A of the 1988 examination, only 18% of the variance was shared. 

Under the conservative algorithm in all cases, less than 50% of the variability in 

performance was shared variance. This suggests that to some extent different 

cognitive abilities are required to answer correctly the items in the two partitions 

defined under the conservative algorithm. This argues that the model that results 

from the conservative partitioning algorithm is more descriptive than the model 

defined under the liberal partitioning algorithm.

4.4 Summary o f  F indings

In this section, the research questions are restated and the findings 

summarized.

4.4.1 Development of the content analysis procedure

The first research question that was posed in Chapter 1 was:

(a) Can a procedure be developed for reliable and valid classification of 

content-area test items according to their degree of relationship to a pre­

defined set of concepts?
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This question addressed the feasibility of the methodology proposed for this 

study. In Chapter 3 it was pointed out that, due to the nature of this question, no 

null hypothesis would be formulated. Instead, the answer to the question was 

based on the results of carrying out the content analysis described in Chapter 3. 

Because the content analysis procedure was successfully developed and produced 

acceptable results, the remaining research questions posed in Chapter 1 could be 

considered.

4.4.2 Comparisons of partitions

In order to consider differences in performance across the partitions of 

items defined in the content analysis procedure, the following research questions 

were posed:

(b) In considering student performance on the test items, was the distribution 

of performance different for items whose content was strongly related to 

logic than for items whose content was not strongly related to logic?

(c) Was there a relationship between the pattern of responses on the set of 

items whose content was strongly related to logic and the pattern of 

responses on the set of items whose content was not strongly related to 

logic?

Both of these research questions were informed by development of simple 

descriptive statistics (mean and standard deviation) of performance on each set of 

items. These values showed that, in general, the strongly related partitions had 

lower means and smaller standard deviations than the corresponding not strongly 

related partition had.



www.manaraa.com

102

Question (b) was tested using the following null hypothesis:

Hi: The difficulty distributions for the partitions of items strongly related and 

not strongly related to logic are the same.

The difficulty distributions defined by the two sets of items were graphed and 

tested for differences using a log-linear test of homogeneity. The null hypothesis 

was rejected under the conservative partitioning algorithm but not under the 

liberal partitioning algorithm. The conclusion was that the conservative 

partitioning algorithm is the superior model for use in future studies.

Research question (c) was addressed by considering the null hypothesis:

H2: The correlation between individual performance on items in the strongly 

related partition and items in the not strongly related partition is zero.

To test this hypothesis, the correlation coefficients for each pairing of item 

partitions were generated (i.e. under both the liberal and the conservative 

partitioning algorithms). The null hypothesis was rejected in all cases; however, 

the practical significance of these results was negligible. The coefficient of 

determination showed that, under the conservative partitioning algorithm, less 

than 50% of the variance in performance on the two partitions was shared. Under 

the liberal partitioning algorithm, this was true in only one case. Hence, the 

conservative partitioning algorithm appears to provide a more descriptive model.
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Chapter 5 Conclusions and Future Research

Chapter 5 discusses the conclusions that can be drawn about the research 

questions based on the results of this study. The generalizability of the results is 

considered. Finally, recommendations for future research are presented. The 

dissertation closes with a brief epilogue that considers the instructional 

implications of the results.

5.1 Conclusions R egarding  R esearch  Questions

This research sought objective evidence as to whether novice computer 

science students have more difficulty understanding concepts in the computer 

science subdomain o f mathematical logic than they generally have in 

understanding other novice computer science concepts. This exploratory study 

produced evidence that supported this conjecture.

The first research question that was posed in Chapter 1, developed in 

Chapter 3, and explored in Chapter 4 was:

(a) Can a procedure be developed for reliable and valid classification of 

content-area test items according to their degree of relationship to a pre­

defined set of logic concepts?

The content analysis procedure that emerged in the final phase of this study 

provided a positive answer to this research question. The final procedure was 

time-effective for the judges to complete, given that the item pool under 

consideration was rather extensive. Reliability results showed that, in general, the 

classification that emerged from the content analysis was consistent and reliable.

103
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Content validity was established for the classification results, based on the 

agreement of nearly 40 experts in computer science. The conclusion was that this 

procedure resulted in the data needed to allow the study to continue. It is 

recommended in the Future Research section that the content analysis procedure 

developed for this study should be refined and applied in other research studies 

both in the field of computer science and in other fields.

An unanticipated benefit was the insight this research provided into 

differences in the way the multiple-choice items were perceived by the judges 

who participated in this study. There was a great deal of variation among the 

judges in their perceptions of which items included mathematical logic concepts 

and to what degree. This observation underscores the lack of consensus within 

the field of computing regarding the relationship between mathematical logic and 

other computer science concepts. Suggestions for deeper exploration of this 

phenomenon are discussed in the Future Research section.

While it would have been possible to train the judges to rate items more 

consistently than they did in this study, such training was deemed undesirable. 

An explicit decision was made to allow judges to use their expertise, bolstered by 

the Quick Reference to Concepts in "Two-Valued Logic” in Figure 3.1, in doing 

the classification. This freedom of interpretation and feedback from the judges 

assisted the researcher in refining the taxonomy of concepts.

Given the results of the classification process during the final content 

analysis procedure, the test items under consideration were divided into partitions 

of items that were strongly related and not strongly related to logic. The 

remaining research questions posed in Chapter 1 were the following:
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(b) In considering student performance on the test items, was the distribution 

of performance different on items whose content was strongly related to 

logic than on items whose content was not strongly related to logic?

(c) Was there a relationship between individual performance on the set of 

items whose content was strongly related to logic and the set of items 

whose content was not strongly related to logic?

The answer to research question (b) was explored both through simple descriptive 

statistics of student performance and by comparing the difficulty distributions of 

the items in the strongly related and not strongly related partitions. In general, 

the items in the strongly related partition were more difficult for the five samples 

of students who took the APCS examinations that were considered in this 

research. The answer to question (c) was investigated through the development of 

correlation coefficients comparing individual performance on items in the two 

partitions. The results of this analysis revealed systematic relationships between 

the patterns of responses to items in the two partitions, suggesting that the 

constructs being tested by items in each partition were related to one another. The 

variability of individual responses to items in the strongly related partition 

explained only a small amount of the variability of individual responses to items 

in the not strongly related partition. Based on the amount of variance shared 

between the two partitions, the conservative partitioning algorithm was more 

discriminating than was the liberal partitioning algorithm.
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5.2 Generalizability  o f  Results

The experts who participated as judges in the content analysis procedure 

and who critiqued the taxonomy of concepts were all actively engaged in 

undergraduate instruction and in research about computer science education. 

Thus, they represented an informed sample of the total population of computer 

science instructors. At least 36 judges rated the items in each examination packet, 

so that their pooled ratings ensured the content validity of the partitioning of the 

APCS items. As a result, repeating the content analysis procedure on the same 

item pool with other experts is predicted to produce similar item partitions under 

both partitioning algorithms.

Because individuals who take the APCS examinations are high school 

students, the generalizability of these results to novice computer science students 

at post-secondary institutions comes into question. However, Advanced 

Placement students tend to be enrolled in advanced or honors high school courses 

and are generally more successful academically than the average high school 

student. In addition, secondary students and first-year undergraduates are near 

one another in age and attitude. The similarities between these two groups argue 

that conclusions about individual performance for the students taking the APCS 

examination are generalizable to the results for novice post-secondary students 

taking the same examinations.

This study focused only on the concepts of logic, grouping all other items 

together, irrespective of consideration of the relative simplicity or difficulty of the 

concepts they covered; the difficulty of logic relative to other specific concepts



www.manaraa.com

107

within computer science was not addressed. While the subdomain of logic does 

cause difficulties for novice computer science students, there may be other 

subdomains that include concepts that are equally or more difficult for novices to 

understand.

5.3 Suggestions fo r  Future Research

Three areas for future research are suggested. Extensions of the current 

study are proposed as well as ideas for new related research questions. First, ways 

are outlined in which the content analysis procedure can be developed further and 

used in other studies. Second, the development of a diagnostic tool based on the 

findings in this and other research is discussed. Third, studies comparing 

pedagogical approaches to teaching logic are suggested.

5.3.1 Continued work with the content analysis procedure

The content analysis procedure developed for this study could be refined 

and extended in four different areas: (1) consideration of additional research 

questions for the classification results from the current study, (2) development of 

additional reliability and validity results for the current study, (3) improvement of 

the content analysis reliability software and procedures, and (4) use of the content 

analysis procedure in other settings and other disciplines. Each of these areas are 

developed further below.

(1) Many interesting research questions considered for the current study 

were not pursued due to time constraints and a need to narrow the scope of the 

research. Examples of research questions that could be investigated in future 

studies with the data from the current study are the following:
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• Was there a relationship between performance on the free-response section 

and performance on each partition of multiple-choice items? Because the 

free-response and multiple-choice sections were completed in different 

time periods and graded using different techniques (the free-response 

section is graded manually by groups of educators using grading rubrics, 

while the multiple-choice section is graded mechanically), the results for 

each section were connected only by being created by the same team and 

by being two sections of the same examination. Bennett, Rock, and Wang 

(1991) found that the free-response and multiple-choice items on the 

APCS examinations measure approximately the same constructs in 

different ways, so that relationships in performance could provide insights 

into differential performance on the strongly related and not strongly 

related partitions of items.

• Was there a significant difference in performance by different 

demographic groups across the partitions of items? For the data sets used 

in this study, gender and ethnicity were reported. Group performance 

statistics could be developed for this data set and the results contrasted 

with other studies that have explored performance differential based on 

ability in logic (e.g. Stager-Snow, 1985; Stofflett & Baker, 1992).

(2) Additional reliability and validity results could be developed for the current 

study. Suggestions include the following:

• Consider the reliability of the classification results from the point of view 

of the groupings of items in each partition. Only the items in a particular 

partition, for example, in the strongly related partition under the
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conservative partitioning algorithm, would be included in the calculations. 

The results could then be compared across partitions and across 

examination packets.

• Compare the reliability between pairs of judges. These pairings would 

provide information that could be used to identify cohorts of judges, that 

is, judges among whom agreement is especially high and consistent. The 

pairings could also be used to identify judges whose ratings deviate 

significantly from those given by the other judges. The ratings of the 

“outlier” judges could be analyzed further to determine their influence on 

the outcome of the partitioning.

• Conduct clinical interviews with a sampling of the judges to compare 

backgrounds and the reasoning that went into their ratings. The sampling 

could be based on information about cohorts of judges and judges whose 

ratings were significantly different from those of the other judges.

• Develop item reliability, which provides an indication of how easy or 

difficult it was to rate each item. The utility of this result could be 

considered in terms of the content analysis results as well as for 

implications about the way in which the APCS examinations are 

constructed.

• Evaluate the criterion-related validity of the partitions of items identified 

in the content analysis procedure. For example, multi-dimensional scaling 

could be used to form clusters of multiple-choice items based on the 

patterns o f responses. The item partitions from this study would then be 

compared to the clusters that emerge. This comparison would address the
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research question: Do student responses indicate groupings of items that 

correspond to the partitioning of items that resulted from the content 

analysis procedure ratings?

• Run the content analysis procedure again with different judges on the 

same examination packets. Comparing the partitions defined by the new 

set of ratings with the results obtained in this study would provide further 

evidence of reliability and content validity.

• Include selected items on in-class examinations for CS1 and CS2 courses. 

The performance results on those items could be compared with the results 

from this study to evaluate the generalizability of the results from the 

samples of students taking the APCS examinations to novice post­

secondary computing students.

(3) The software package used for calculating the various types o f content 

analysis reliability could be developed further.

• Generate standard error information for the results produced by the 

software package.

• Develop an improved software package for calculating the content 

analysis reliability, especially if the content analysis procedure from this 

study is to be used by other researchers. The current software package 

was intended to be a prototype. Time constraints and the acceptable 

functionality o f the prototype rendered a new development effort 

unnecessary for the purposes of this study. The redesigned software 

package would concentrate on ease of use, the possibility for interactions
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with other statistical analysis tools, and expansion and refinement of the 

features and reliability procedures.

(4) The content analysis procedure could be applied in other settings and in other 

disciplines.

• Carry out the procedure for items from other types of examinations for the 

same concept subdomain, mathematical logic in computer science.

• Use the procedure to investigate differential performance in other 

subdomains of computer science.

• Apply the procedure in research studies in fields other than computer 

science.

5.3.2 Development of a diagnostic tool

Based on the results from this study and from studies that showed ability 

in prepositional logic could be used to predict success in science courses (e.g., 

Pibum, 1990), a diagnostic tool could be developed. Such an instrument could be 

used in designing experiments to compare approaches to and materials for 

teaching the concepts of logic and other advanced concepts that depend on an 

understanding of logic. The instrument would incorporate multiple-choice items 

identified during this study as well as aspects of other tests that measure 

understanding of prepositional logic (e.g., the Prepositional Logic Test as 

described in Pibum, 1989). The instrument would be simple and brief.

Based on the results of pilot studies, one or more case studies could be 

developed with individuals whose responses were especially interesting according 

to predefined criteria. The case study would consist of guided student interviews
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and analysis of think-aloud protocols produced as subjects verbally worked 

through questions similar to those on the instrument.

5.3.3 Approaches to teaching logic to computer science students

In his survey of “Mathematics of computing”, Saiedian (1992) claims:

By integrating courses in discrete mathematics and mathematical 
logic as part of a pragmatic approach to computer science 
education, we can increase our students' level of reasoning, 
prepare them for courses in formal models, improve their 
theoretical foundation, and prepare them for career growth and/or 
advanced studies, (p. 220)

While the author of this dissertation supports this statement, she has not

discovered objective evidence that supports Saiedian’s claim that students'

enrollment in discrete mathematics and mathematical logic courses leads to an

improvement in their levels of reasoning. Future research must be designed to

provide objective evidence of such claims —  claims that many computer science

educators take as “self-evident”.

Curricular guidelines for computer science (e.g., Tucker, 1990) include

mathematical logic as a topic in the discrete mathematics course that is

recommended for all computer science majors. The current study has shown that,

for the samples of novice students who took the Advanced Placement

Examinations in Computer Science, items that included logic as a main concept or

vital subconcept were generally more difficult. Anecdotal reports suggest that

novice computing students at the post-secondary level have similar problems.

Warford (in press) has described his experiences teaching a discrete mathematics

course that had as its foundation the skillful manipulation of expressions in

prepositional and predicate calculus. Research should be designed to compare
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and contrast the effectiveness of this approach and other approaches to teaching 

discrete mathematics.

5.4 Epilo g u e

H ie results of the present study indicate that novice computer science 

students do experience more difficulty with the concepts of mathematical logic 

than they do, in general, with other computer science concepts. No attempt was 

made to establish logic as “the most difficult” subdomain of computer science. 

However, the evidence from this study does show that the Advanced Placement 

Examination multiple-choice items judged to be strongly related to logic were 

more difficult than the items that were not strongly related to logic.

Two important questions to be considered in continued research are: 

(1) What can be done to improve beginning students* likelihood of learning the 

concepts in this content domain well? and (2) How can one provide remediation 

for novice students who have learned the concepts of logic poorly? The answers 

to these questions have strong potential for positively influencing the future 

success of computer science students. In particular, this study has implications 

for pre-college instruction in mathematical logic and for the college-level discrete 

mathematics course(s) taken by beginning and novice computing students.
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Appendix A Overview of Computing Curricula 1991

The report titled Computing Curricula 1991 (Tucker, 1990), gives 

curricular recommendations for a variety of undergraduate programs in the 

discipline of computing, defined to encompass programs with titles such as 

“computer science”, “computer engineering”, and “computer science and 

engineering”.

The guidelines describe a set of nine subject areas that comprise the 

subject matter of the computing discipline. Within the subject area definitions are 

contained certain fundamental subjects, called “common requirements”, that 

should be covered in all undergraduate programs in computing. The subject areas 

are given in Table A .I. To reflect the working methodologies that different 

practitioners apply during the course of their research, development, and 

applications work, three processes were delineated. These processes, theory, 

abstraction and design, are outlined in Table A.2. Twelve recurring concepts 

were identified to acknowledge the threads of significant ideas, concerns, and 

principles that permeate the academic discipline of computing across all subject 

areas and all processes; these are given in Table A.3.

The subject matter to be covered in all academic computing programs is 

described in terms of knowledge units. The definition of each knowledge unit is 

based on the subject areas, processes, and recurring concepts discussed in the 

previous paragraph. The description of each knowledge unit includes:

• a high level description of goals and general subject matter
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• the recurring concepts appropriate to the knowledge unit

• suggested lecture topics, including minimum number of lecture hours

• typical laboratory exercises and goals

• related knowledge units

• prerequisite knowledge units

• knowledge units for which the unit is a prerequisite

The report explains that the knowledge units will map into different sets of 

courses at different institutions and gives several example implementations in an 

appendix. Table A .l lists the “common requirements” knowledge units defined in 

Computing Curricula 1991. For further details, refer to Tucker (1990).
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Table A. 1 Subject Areas Outlined in Computing Curricula 1991
subject area explanation o f  subject area and major topics

algorithms and data 
structures

• specific classes of problems and their efficient solutions
• major topics:

- performance characteristics o f algorithms
- the organization of data relative to different access 

requirements
architecture • methods of organizing efficient, reliable computing systems

• major topics:
- implementation of processors, memory, communications, 

and software interfaces
- design and control o f large computational systems that are 

reliable
- performance measurement and modeling

artific ia l intelligence and 
robotics

• basic models of behavior
• major topics:

- building of (virtual or actual) machines to simulate animal 
and human behavior

- inference, deduction, pattern recognition, knowledge 
representation

database and information 
retrieval

• organization of information and algorithms for the efficient 
access and update o f stored information

• major topics:
- modeling of data relationships
- security and protection o f information in a shared 

environment
- characteristics o f external storage devices

human-computer
communication

• efficient transfer o f information between humans and 
machines

• major topics:
- graphics
- human factors that affect efficient interaction
- organization and display of information for effective 

utilization bv humans
numerical and symbolic 

computation
• genera] methods for efficiently and accurately using 

computers to solve equations from mathematical models
•  major topics:

- effectiveness and efficiency o f various approaches to the 
solution of equations 

• development o f high-quality mathematical software 
packages

operating systems • control mechanisms that allow multiple resources to be 
efficiently coordinated during the execution of programs

• major topics:
- appropriate interfaces for users
- effective strategies for resource control
- effective organization to support distributed computations

Table A.J continued on next page
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Continuation o f Table A. 1
subject area explanation

programming languages • notations for defining virtual machines that execute 
algorithms

• the efficient translation from high-level to machine codes
• various extension mechanisms that can be provided in 

programming languages
software methodology and 

engineering
• design and production of large software systems that meet 

specifications
• major topics:

- principles of programming and software development
- verification and validation of software
- specification and production of software systems that are 

safe, secure, reliable, and dependable

Table A.2 Processes as Defined in Computing Curricula 1991
process explanation o f process

theory • akin to processes used in mathematics in the development of coherent 
theories

• used in developing and understanding the underlying mathematical 
principles that apply to the discipline of computing

• major elements:
• definitions and axioms
- theorems
- proofs
- interpretation of results

abstraction • rooted in the experimental sciences
• used when modeling potential algorithms, data structures, architectures, etc.
• also used when testing hypotheses about models, alternative design 

decisions, or the underlying theory itself
• major elements:

- data collection and hypothesis formation
- modeling and prediction
- design of an experiment
- analvsis o f results

design • rooted in engineering
• used in the development o f a system or device to solve a given physical 

problem
• involves conceptualization and realization o f systems in the context o f real- 

world constraints
• major elements:

- requirements
- specifications
- design and implementation
- testing and analvsis
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Table A.3 Recurring Concepts as Defined in Computing Curricula 1991
recurring concept brief characterization

binding • processes o f making an abstraction more concrete by assigning 
properties to it

complexity o f large 
problems

• effects o f the nonlinear increase in complexity as the size o f a 
problem grows

• factor in distinguishing and selecting methods that scale to 
different data sizes, problem spaces, and program sizes

• in large programming projects, factor in determining the 
organization o f an implementation team

conceptual and form al 
models

• various ways o f formalizing, characterizing, visualizing, and 
thinking about an idea or problem

consistency and 
completeness

• all concrete realizations o f the concepts o f consistency and 
completeness in computing, including related concepts such as 
correctness, robustness, and reliability

efficiency • all measures of cost relative to space, time, monev and people
evolution • the fact o f change and its implications

• impact o f change at all levels and the resiliency and adequacy 
o f abstractions

• techniques and systems in the face o f change
levels of abstraction • nature and use of abstraction in computing

• use of abstraction in managing complexity, structuring 
systems, hiding details, capturing recurring patterns

• ability to represent an entity or system by abstractions having 
different levels o f detail and specificity

ordering in space • concepts o f locality and proximity, including: 
• distributed systems
- networking
- software packages

ordering in tim e • concept o f time, including:
- time as a formal parameter in formal models (e.g., in 

temporal logic)
- time as a means of synchronizing processes that are spread 

out over space
- time as an essential element in the execution o f algorithms

reuse • the ability o f a particular technique, concept, or system 
component to be reused in a new context or situation

security • the ability o f software and hardware systems to respond 
appropriately to and defend themselves against inappropriate 
and unanticipated reauests

tradeoffs and consequences • the phenomenon of tradeoffs in computing and the 
consequences o f such tradeoffs

• technical, economic, cultural, and other effects of selecting one 
design alternative over another
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Table A.4 Knowledge Units Comprising the Common Requirements in 
Computing Curriculum 1991

“tag” knowledge unit name

OS operating systems
051
052
053

054
055

056
057
058
059 

OS 10

• history, evolution, and philosophy
• tasking and processes
• process coordination and 

synchronization
• scheduling and dispatch
• physical and virtual memory 

organization
• device management
• file systems and naming
• security and protection
• communications and networking
• distributed and real-time systems

PL programming languages
PLI

PL2
PL3
PL4
PL5

PL6
PL7

PL8

PL9
PL10
PL11
PL12

• history and overview of programming 
languages

• virtual machines
• representation of data types
• sequence control
• data control, sharing, and type 

checking
• run-time storage management
• finite state automata and regular 

expressions
• context-free grammars and pushdown 

automata
• language translation systems
• programming language semantics
• programming paradigms
• distributed and parallel programming 

constructs
SE software methodology & 

engineering
SE1
SE2
SE3

SE4
SE5

• fundamental problem-solving concepts
• the software development process
• software requirements and 

specifications
• software design and implementation
• verification and validation

SP social, ethical, & professional issues
SP1

SP2

SP3
SP4

• historical and social context of 
computing

• responsibilities of the computing 
professional

• risks and liabilities
• intellectual property

“tag” knowledge unit name

AL algorithms and data structures
ALI
AL2
AL3
AL4
AL5
AL6
AL7
AL8
AL9

• basic data structures
• abstract data types
• recursive algorithms
• complexity analysis
• complexity classes
• sorting and searching
• computability and undecidability
• problem-solving strategies
• parallel and distributed algorithms

AR architecture
AR1
AR2
AR3
AR4
AR5

AR6
AR7

• digital logic
• digital systems
• machine-level representation of data
• assembly-level machine organization
• memory system organization and 

architecture
• interfacing and communication
• alternative architectures

AI artificial intelligence and robotics
AH

AI2

• history and applications of artificial 
intelligence

* problems, state spaces, and search 
strategies

DB database and information retrieval
DB1

DB2

• overview, models, and applications of 
database systems

• the relational data model
HU human-computer communication

HU1
HU2

• user interfaces
• computer graphics

NU numerical and symbolic computation
NU1

NU2

• number representation, errors, and 
portability

• iterative approximation methods
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Appendix B Topic Outline for the Advanced Placement 
Examination in Computer Science

Appendix B presents the topic outline for AP Computer Science courses.

The outline is extracted from the Advanced Placement Course Description:

Computer Science (College Board, 1990). The two courses, Computer Science A

and Computer Science AB, are described as follows:

The major emphasis in the Computer Science A course is on 
programming methodology and procedural abstraction. However, 
the study of these topics cannot occur in isolation from the study of 
algorithms, data structures, and data abstraction, so these latter 
topics are included in the course as needed.

In brief, Computer Science A consists of the study of programming 
methodology without any discussion of formal correctness proofs 
or arguments. Algorithms (particularly sorting and searching 
algorithms) are informally compared and no use is made of the 
“big- 0 ” notation. Data structures and data abstraction are studied 
in the context of a computer language’s built-in types and 
structures (e.g., arrays and records) and non-linked structures that 
can be built from these. Recursion is introduced as a control 
abstraction.

In addition to the topics studied in Computer Science A, Computer 
Science AB deals more formally with program verification and 
algorithm analysis. In addition to the study of programming 
methodology and procedural abstraction that is the core of 
Computer Science A, there is a major emphasis on the study of 
data structures and data abstraction. The use of recursive data 
structures and dynamically allocated data structures is fundamental 
to Computer Science AB. (p. 8)

The outline that begins on the following page is a reproduction of the topic 

outline that appears in (College Board, 1990, pp. 10-15). Those topics that are 

only included in Computer Science AB are indicated by a check mark in the 

second column. The purpose of the APCS examinations is “...to  determine how
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well students have mastered the concepts and techniques contained in the 

respective course outlines” (College Board, 1990, p. 36). All topics in the outline 

are tested on the AB version of the APCS examination, while the A version 

covers only those topics that are not checked.

APCS Topic Outline

Area AB? Topics

A. Programming 
Methodology

L  Specification
a  Problem definition and requirements
b. Program and subprogram specifications

(e.g., pro- and postconditions, exceptional conditions)
c. Abstract data tvoes

2. Design 
a  Adaptability

i. Simplicity vs. generality
ii. Reusable code (software components)

b. Subprogram decomposition and data structuring
i. Exploring alternatives

ii. Information hiding
c. Stepwise refinement o f subprograms and data structures
d. Choice o f data structures and algorithms
e. User interface (e.g., error checking, help facilities)

V

3. Implementation
a  Coding

i. Structure
ii. Style and clarity o f expression

b. Program correctness
i. Testing and debugging

A. Reasoning about programs
B. Assertions
C. Invariants

ii. Verification
c. Incremental development

i. Top-down
ii. Bottom-up

iii. Other heuristics, order o f implementation
4  Documentation

APCS Topic Outline continued on following page
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Continuation o f APCS Topic Outline
A re a AB? T op ics

B. Features of 
Block* 
Structured 
Programming 
Languages V

L Type and constant declarations
a  Named constants
b. Simple data types

(Boolean, character, integer, real, subrange, enumerated)
c. Structured data types (e.g., arrays, records, sets, flies, strings)
d. Pointer types

2. Scope

V

3. Expressions and evaluation 
a  Infix notation and operator precedence
b. Standard functions
c. Prefix and postfix notation

4  Assignment statements
5. Control structures

a  Sequential execution
b. Conditional execution
c. Loops

V

6. Input and output
a  Terminal 
b. Text files 
c  Files of other types

7. Subprograms 
a  Procedures and functions
b. Parameters

i. Actual and formal
ii. Value and reference

c. Recursion
& Program annotation (comments)
9. Notation for language definition

(syntax diagrams, Backus-Naur form)

C  Fundamental 
Data
Structures V

V

v

L Linear
a. Variations

i. Lists
ii. Stacks

iii. Queues
b. Representations

i. Sequential
ii. Random access

iii. Linked (singly and doubly, circular, with and without list 
heads)

2  Multidimensional (e.g., matrices, tables)
3. Records
4  Tree structures
5. Variations (e.g., alternative representation)

APCS Topic Outline continued on following page
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Continuation o f APCS Topic Outline
A re a AB? Topics

L Operations on fundamental data structures
D. Algorithms a  Insertion

b. Deletion
c. Traversals

2. Searching
a  Sequential (linear) search
b. Binary search

V & Hashing
V d  Searching an ordered binary tree

3. Sorting
a  Quadratic sorts
b. More efficient sorts

4  Analysis of algorithms
a  Informal comparison of speeds

V b. The meaning of “big-O” notation
V g  Worst-case time
V d  Worst-case space
V 5. Numerical algorithms
V a  Approximations (e.g., zeros of functions, Monte Carlo method)
V b. Numerical accuracy
< i. Round-off effects
V ii. Precision of approximations

L Major hardware components
E. Computer a  Primary and secondary memory

Systems b. Processors
a  Peripherals

2. System software
a  Language translators
b. Operating systems
g  Filesystems

3. Types of systems
a  Single-user systems
b. Time-sharing and batch-processing systems
g  Networks

F. Responsible L Privacy
Use of 2. Reliability of systems
Computer 3. Legal issues and intellectual property
Systems 4  Social ramifications of computer applications

Note: From Advanced Placement Course Description: Computer Science, College Entrance 
Examination Board, 1990 (May 1991 version), pp. 10-14. Adapted by permission.
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Appendix C Taxonomy of Concepts in the Computer Science 
Subdomain Two-Valued Logic

Appendix C presents the full taxonomy of concepts in the computer 

science subdomain of mathematical logic that was developed for this study. The 

taxonomy fills in the details for the high-level pictorial outline that was given as 

the Quick Reference to the Concepts o f ”Two-Valued Logic" in Figure 3.1 of 

Chapter 3. The qualifying phrase “two-valued” was used to emphasize the sort of 

mathematical logic that was under consideration in this research, that is, logic 

restricted to a two-valued domain.

124



www.manaraa.com

125

Full Taxonomy of Concepts 
in the Computer Science Subdomain Two-Valued Logic

1.0 Datatype boolean
1.1 Set of values {true,false)
1.2 Set of operations {equal (=1. dql(-i), 

an$L( a ) , q l (v ) , im p lie s . ( = » ) , . . . )

1.2.1 Troth tables
1.2.2 Precedence rales

1.3 Properties
1.3.1 Non-numeric
1.3.2 Unordered
1.3.3 Discrete

2.0 Related simple datatypes
2.1 Bit

2.1.1 Set of values (0,1)
2.1.2 Set of operations {equal. +, *, 

imflutei,...)
2.1.3 Properties

2.1.3.1 Numeric
2.1.3.2 Ordered
2.1.3.3 Discrete
2.1.3.4 Bounded

2.2 State, restricted to two values
2.2.1 Set of values: Any set of two distinct 

literal values (e.g., (on, off), (left, 
right))

2.2.2 Set of operations (equal, giggle, •••)
2.2.3 Properties

2.2.3.1 Non-numeric
22.3.2 Unordered
22.3.3 Discrete

2.3 Two-valued subrange of integer

3.0 Boolean-btaed calculi
3.1 Boolean variables or identifiers
3.2 States (associating identifiers with values)
3.3 Propositions
3.4 Tautologies
3.5 Quantification
3.6 Bound vs. free variables
3.7 Predicates
3.8 Functions
3.9 Laws (equivalence, commutative, 

associative, distributive, De Morgan's,...)
3.10 Axioms, inference roles, theorems

4.0 Boolean aspects of Programming 
Languages

4.1 Realization of datatype boolean
4.2 Boolean expressions

4.2.1 Constants and named constants
4.2.2 Relations (functions of other datatypes 

yielding boolean values)
4.2.3 “Predicate calculus expressions” 

(functions of boolean values yielding 
boolean values)

4.2.4 Boolean -valued function calls
4.3 Assignment with datatype boolean

4.3.1 rvalues: [named] constant, variable,

4.3.2 lvalues: variable, field, attribute, 
property,...

4.4 Conditional control structures in imperative 
languages

4.4.1 Selection
4.4.1.1 Explicit boolean condition 

(e.g.,if)
4.4.1.2 Implicit boolean condition 

(e.g. case in Pascal)
4.4.2 Iteration

4.4.2.1 Explicit boolean condition 
(e.g.. while & repeat in 
Pascal; lot in C)

4.4.2.2 implicit boolean condition 
fe.g.. for in Pascal)

4.3 Parameters of type boolean
4.6 Other uses in non-imperative languages

4.6.1 Constraints in descriptive or 
declarative languages

4.6.2 Explicit third value, i.e. {tme, false, 
nulUno value)

5.0 Assertions & Forma) Verification
3.1 Precondition / postcondition
3.2 Loop invariant
3.3 Calculation of weakest precondition
3.4 Data transformations

6.0 Other Topics /  Advanced Topics
6.1 Boolean structures
6.2 Deduction systems
6.3 Constructivist logic / 3-valued logic
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Appendix D Letter Used to Solicit Assistance in Final Phase of
Content Analysis Procedure

Dear <name of volunteer>,

Dr. Nell Dale has given me your name as someone who is willing to assist me in my doctoral 
research. The task I am asking you to complete involves ranking up to 174 multiple-choice items 
that have appeared on the Advanced Placement examinations in Computer Science. These items 
are from the years for which the multiple-choice items have been made publicly available: 1984, 
1988, and 1992 (which has two separate versions, A and AB).

In this packet, I have provided you with the following:

• A Quick Reference showing the concepts of two-valued logic; these are the concepts that will 
guide the rating you give to each item.

• The four sets of items to be rated (1984,1988,1992A, & 1992B).
• The correct answers to all of the items.
• Four copies of the coding form on which to record your responses.

The coding form includes the following information:
-  At the upper left, a line where you should enter your name (your specific responses will 

be anonymous in the analysis).
-  At the upper right, a box where you should circle the year of the test you are rating on this 

form.
-  In the middle at the top, a box for your reference that gives brief descriptions of the four 

categories of relationship between a particular item and the concepts of two-valued logic 
(that is, either the item includes two-valued logic (2vl) as a ‘main concept’, a ‘vital 
subconcept’, or a ‘trivial subconcept’, or is ‘not used’).

-  On the remainder of the page, the boxes to be marked with your responses on each item; 
note that the number of items varies between the tests!! If you change your mind about a 
rating, either circle your final choice or write the final choice to the side.

In completing this task, please do not spend too much time on any item. This task should take at 
most two hours. It is very important that, once you have received the materials, you do not discuss 
the items or the rating process with anyone else until after you (and they, if they are also 
completing this for me) have completed a ll  of the coding forms. In my experience, your first 
reaction will usually be the best.

Please return the completed forms to me by mid-September at the latest; for your convenience, I 
have included a stamped, self-addressed envelope. You are welcome to keep the examination 
packets and other materials. In the near future I will also have electronic versions of these items 
available.

Thank you for your interest and for your time. Please feel free to contact me if you have any 
questions. I will share the results of my research in the future.

Sincerely,

Vicki L. Almstrum
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Appendix E Coding Form for Content Analysis Procedure

Appendix E gives the coding form that was used during the final phase of 

the content analysis procedure. Key features of the coding form are the following:

• The form design allowed one layout to be used for rating any of the 

examination packets. Judges were instructed to circle the appropriate 

examination packet year in the upper right-hand comer of the form.

• As an aid, the number of items in each examination packet was given 

beneath the examination packet years in the upper right-hand comer.

• The judge’s name was to be entered at the upper left-hand comer of the 

form. The researcher assigned a unique identification code to each judge, 

allowing a particular judge’s ratings across examination packets to be 

traced. All identifying information was kept in confidence so that a 

particular judge could not be identified based simply on the reported 

responses.

• Simple clarification of the instructions for completing the classification 

procedure was given at the top of the form, including the classification 

categories.

The primary criticism of the form as given was the absence of item numbers along 

the right side of each column, mirroring those given at the left. It was felt that the 

extra column would have made it easier for the judge to check the appropriate 

box. If the form is used again, it should be modified by repeating the first column 

as the last column.
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Appendix F Item Assignment to Strongly Related and Not 
Strongly Related Partitions under each Partitioning Algorithm

Appendix F reports the item-by-item assignment to partitions for all of the 

examination packets. Tables F .l through F.4 provide detailed information about 

the 1984, 1988, 1992 version A, and 1992 version AB examination packets, 

respectively. Each table reports, per item, the number of judges who chose the 

strongly related classifications (‘main concept’ or ‘vital subconcept’) and the not 

strongly related classifications ( ‘trivial subconcept’ or ‘not used’). These two 

figures were the basis for assigning the item to a partition under each of the two 

partitioning algorithms; an item’s partition assignment under each partitioning 

algorithm is shown symbolically immediately to the right of the item number in 

the table.

The partitioning algorithms were as follows:

• Under the liberal partitioning algorithm, an item was classified as strongly 

related if 50% of the judges had rated the item as ‘main concept’ or ‘vital 

subconcept’ and not strongly related otherwise.

• Under the conservative partitioning algorithm, an item was classified as 

strongly related if at least 75% of the judges had rated it as ‘main concept’ 

or ‘vital subconcept’. If fewer than 25% of the judges rated the item as 

‘main concept’ or ‘vital subconcept’, it was classified as not strongly 

related. Under the conservative partitioning algorithm, items in the mid­

range of agreement were eliminated from further consideration.
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Table F. 1 Number of Judges Choosing Specific Categories for Each Item and
Assignment of Items to Partitions under Each Partitioning Algorithm for 1984
APCS Examination

item number and' 
partition indicators 
under liberal and 

conservative 
algorithms

Hof judges c
main concept 

or vital 
subconcept

hoosing...
trivial 

subconcept 
or not used

1984-23 * • 0 38
1984-24 * • 0 38
1984-25 t  - 28 10
1984-26 * • 1 37
1984-27 * • 0 38
1984-28 * • 0 38
1984-29 * • 0 38
1984-30 f  - 23 15
1984-31 * • 2 36
1984-32 * • 1 37
1984-33 * • 9 29
1984-34 * • 8 30
1984-35 * - 10 28
1984-36 * - 14 24
1984-37 * - 17 21
1984-38 * • 9 29
1984-39 * • 1 37
1984-40 * • 4 34
1984-41 f  * 30 8
1984-42 f  t 37 1
1984-43 * • 2 36
1984-44 * • 3 35

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

Hofjudges
main concept 

or vital 
subconcept

hoosing...
trivial 

subconcept 
or not used

1984-01 * • 0 38
1984-02 f  - 24 14
1984-03 * • 2 36
1984-04 * • 4 34
1984-05 * • 1 37
1984-06 * • 5 33
1984-07 * • 0 38
1984-08 t  - 25 13
1984-09 * • 8 30
1984-10 * • 2 36
1984-11 * • 2 36
1984-12 t  - 27 11
1984-13 * • 6 32
1984-14 * • 4 34
1984-15 * • 0 38
1984-16 t  * 29 9
1984-17 t  t 38 0
1984-18 f  - 24 14
1984-19 * - 14 24
1984-20 * • 0 38
1984-21 * • 2 36
1984-22 * • 2 36

Note: number of judges = 38

Kev to partition indicators:
First column of symbols after the item number: liberal algorithm, where: 

t  means the item is in strongly related partition
* means the item is in not strongly related partition

Second column of symbols after the item number conservative algorithm, where: 
t  means the item is in strongly related partition
• means the item is in not strongly related partition 
-  means the item is excluded from consideration
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Table F.2 Number of Judges Choosing Specific Categories for Each Item and
Assignment of Items to Partitions under Each Partitioning Algorithm for 1988
APCS Examination

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# ofjudges
main concept 

or vital 
subconcept

hoosing... 
trivial 

subconcept 
or not used

1988-26 * • 1 35
1988-27 * • 1 35
1988-28 * • 1 35
1988-29 * - 12 24
1988-30 * • 1 35
1988-31 * • 1 35
1988-32 t  - 19 17
1988-33 * - 9 27
1988-34 * • 2 34
1988-35 * • 3 33
1988-36 * • 0 36
1988-37 * • 0 36
1988-38 * • 4 32
1988-39 * • 7 29
1988-40 f  - 19 17
1988-41 * • 6 30
1988-42 * • 0 36
1988-43 * • 1 35
1988-44 t  t 30 6
1988-45 * • 0 36
1988-46 * • 8 28
1988-47 * • 3 33
1988-48 * • 1 35
1988-49 * • 3 33
1988-50 f  - 23 13

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# ofjudges
main concept 

or vital 
subconcept

hoosing... 
trivial 

subconcept 
or not used

1988-01 * • 0 36
1988-02 * • 0 36
1988-03 * • 1 35
1988-04 * • 4 32
1988-05 f  % 28 8
1988-06 f  % 33 3
1988-07 * • 0 36
1988-08 * • 0 36
1988-09 * • 0 36
1988-10 * • 2 34
1988-11 * - 12 24
1988-12 f  - 24 12
1988-13 t  - 18 18
1988-14 t  % 32 4
1988-15 f  - 24 12
1988-16 f  - 18 18
1988-17 * - 12 24
1988-18 f  - 26 10
1988-19 * - 12 24
1988-20 * - II 25
1988-21 * • 1 35
1988-22 f  - 20 16
1988-23 t  t 35 1
1988-24 * • 0 36
1988-25 * - 17 19

Note: number o f judges = 36; version A is items 1-35 and version AB is all 50 items 

Key, to partition indicators;
First column of symbols alter the item number liberal algorithm, where: 

t  means the item is in strongly related partition
* means the item is in not strongly related partition

Second column of symbols after the item number conservative algorithm, where:
$ means the item is in strongly related partition
• means the item is in not strongly related partition 
-  means the item is excluded from consideration
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Table F.3 Number of Judges Choosing Specific Categories for Each Item and
Assignment of Items to Partitions under Each Partitioning Algorithm for 1992
APCS Examination, Version A

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# of judges c
main concept 

or vital 
subconcept

hoosing... 
trivial 

subconcept 
or not used

1992A-01 * • 4 34
1992A-02 * • 3 35
1992A-03 * • 0 38
1992A-04 * - 14 24
1992A-05 * - 11 27
1992A-06 * • 1 37
1992A-07 * • 1 37
1992A-08 f  - 28 10
1992A-09 * - 15 23
1992A-10 * - 16 22
1992A-11 t  - 26 12
1992A-12 f  * 37 1
1992A-13 f  - 26 12
1992A-14 * - 17 21
1992A-15 * - 15 23
1992A-16 t  - 27 11
1992A-17 * - 16 22
1992A-18 * • 9 29
1992A-19 * - 10 28
1992A-20 f  - 28 10

Note: number o f judges = 38

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# ofjudges
main concept 

or vital 
subconcept

hoosing... 
trivial 

subconcept 
or not used

1992A-21 f  - 26 12
1992A-22 f  - 19 19
1992A-23 * • 2 36
1992A-24 f  t 32 6
1992A-25 t  - 25 13
1992A-26 t  t 38 0
1992A-27 f  * 37 1
1992A-28 * • 3 35
1992A-29 * - 16 22
1992A-30 f  * 29 9
1992A-31 f  * 38 0
1992A-32 t  * 38 0
1992A-33 * - 18 20
1992A-34 * • 5 33
1992A-35 f  * 31 7
1992A-36 * - 15 23
1992A-37 * • 2 36
1992A-38 * • 2 36
1992A-39 * • 1 37
1992A-40 * • 9 29

Kev to partition indicators:
First column of symbols after the item number liberal algorithm, where: 

t  means the item is in strongly related partition
* means the item is in not strongly related partition

Second column of symbols after the item number conservative algorithm, where: 
t  means the item is in strongly related partition
• means the item is in not strongly related partition 
-  means the item is excluded from consideration
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Table F.4 Number of Judges Choosing Specific Categories for Each Item and
Assignment of Items to Partitions under Each Partitioning Algorithm for 1992
APCS Examination, Version AB

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# ofjudges
main concept 

or vital 
subconcept

hoosing...
trivial 

subconcept 
or not used

1992B-21 t * 38 0
1992B-22 * • 6 32
1992B-23 * • 4 34
1992B-24 t - 22 16
1992B-25 t t 38 0
1992B-26 t t 38 0
1992B-27 t * 31 7
1992B-28 * • 3 35
1992B-29 * - 13 25
1992B-30 * • 9 29
1992B-31 t t 33 5
1992B-32 t 36 2
1992B-33 * - 12 26
1992B-34 * • 6 32
1992B-35 * • 4 34
1992B-36 * • 7 31
1992B-37 * • 2 36
1992B-38 * • 2 36
1992B-39 * - 16 22
1992B-40 * - 11 27

item number and 
partition indicators 
under liberal and 

conservative 
algorithms

# of judgesc
main concept 

or vital 
subconcept

hoosing... 
trivial 

subconcept 
or not used

1992B-01 * • 0 38
1992B-02 * • 4 34
1992B-03 * • 3 35
1992B-04 t  - 26 12
1992B-05 * - 11 27
1992B-06 t  - 26 12
1992B-07 * • 1 37
1992B-08 * • 5 33
1992B-09 * - 12 26
1992B-10 * - 12 26
1992B-11 t  - 24 14
1992B-12 * • 4 34
1992B-13 * • 2 36
1992B-14 f  - 28 10
1992B-15 * - 14 24
1992B-16 f  $ 38 0
1992B-17 t  * 37 1
1992B-18 t  t 36 2
1992B-19 * • 2 36
1992B-20 * • 2 36

Note: number o f judges = 38

Kev to partition indicators:
First column of symbols after the item number: liberal algorithm, where: 

t  means the item is in strongly related partition
* means the item is in not strongly related partition

Second column of symbols after the item number conservative algorithm, where: 
t  means the item is in strongly related partition
• means the item is in not strongly related partition 
-  means the item is excluded from consideration
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Appendix G Multiple-Choice Items in the Strongly Related 
Partition Defined by the Conservative Partitioning Algorithm

Appendix G presents the full text of several multiple-choice items from 

the Advanced Placement Examinations in Computer Science for 1984,1988, and 

1992. The items included in this appendix are those that, after the final phase of 

the content analysis procedure was completed, were classified as strongly related 

under the conservative partitioning algorithm.

Twenty-two multiple-choice items are included in Appendix G. The 

sources of the items are as follows:

• 4 items from the 1984 examination
(1984-16,1984-17,1984-41,1984-42)

• S items from the 1988 examination
(1988-5,1988-6,1988-14,1988-23, 1988-44)

• 4 items from the A version of the 1992 examination
(1992A-12,1992A-24,1992A-30,1992A-35)

• 5 items from the AB version of the 1992 examination
(1992B-25,1992B-26,1992B-27,1992B-31,1992B-32)

• 4 items that were common to both versions of the 1992 examination
(1992A-26= 1992B-16,1992A-27 = 1992B-17,
1992A-31 = 1992B-18,1992A-32 = 1992B-21)

Because the items are being presented outside of the context of the 

examination packet, some minor changes have been made to the introductory 

wording for some items. Such changes were purely cosmetic and had no effect on 

the content of the multiple-choice item.
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1984-16&17
Questions 16-17 are based on the following program segment that searches an array. This array is 
sorted in increasing order and contains Num elements, where Mum is non-negative.

F i r s t  := 1 ;
Last : = MUm ;
Found := f a l s e ;

while (F irs t  <= L a s t)  and (not Found) do 
beain

M id d le  := (F irs t + Last) d iv  2 ; 
i f  I te m  = L is t [Middle] then 

Found := t r u e  
else

i f  Item < L i s t  [M iddle] then 
L a s t  := M id d le  -  1 

else
F i r s t  := M id d le  + 1

end

1984-16
How many times will the body of the loop be executed if Mum = 100 and item  = L is t[ l]?

(A) One

(B) Three

(C) Four

(D) Five

(E) Six_____________________________________________________________________

1984-17
Which of the following assertions will be t ru e  every time the program segment completes 
execution?

(A) (Item = L is t [Middle]) c r  not Found

(B) (Item = List[M iddle]) and Found

(C) F ir s t  £  Middle £  Last

(D) F irs t  < Last

(E) None of the above_________________________________________________________

Note: Correct responses to 1984-16 and 1984-17 are (E) and (A), respectively;
From The Entire 1984 AP Computer Science Examination and Key, College Entrance 
Examination Board, 1986, p. 13. Adapted by permission.
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1984-41
Let xan d y  be variables of type r e a l  with only positive values. Of the following, which best 
describes the conditions under which the b o o le a n  expression, x  + y  = x, can have the value
true?

(A) Only when y  > x

(B) Only when y  < 1

(C) Only when x  is much greater than y

(D) Only when the computer has 16-bit words

(E) It can never have the value true

Note: Correct response to 1984-41 is (C); From The Entire 1984 AP Computer Science
Examination and Key, College Entrance Examination Board, 1986, p. 27. Adapted by 
permission.

1984-42
i  : = 1 ,
while ( i <= Max) and (String!i] <>Symbol) d& i  := i  + 1

Which of the following is a loop invariant for the w hile loop above; i.e., which is t ru e  each time 
the w hil e-condition is tested?

(A) i  = Max
(B) i  = i  + 1
(C) Stringtj) = Sym bol for all j  such that i  < j

(D) string! j ]  & symbol for all j  such that i  ^  j

(E) String! j ]  5* Sym bol for all j  such that 1 £ j  < i
Note: Correct response to 1984-42 is (E); From The Entire 1984 AP Computer Science

Examination and Key, College Entrance Examination Board, 1986, p. 27. Adapted by 
permission.
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1988-5
If evaluating bbb has no side effects, under what condition(s) can the program segment 

while BBB do 
B lo c k l  

be rewritten as 
xsosaL 

B lo c k l  
un til not BBB

Without changing the effect of the code?

(A) Under no conditions

(B) If executing B lo c k l  does not affect the value of bbb
(C) If the value of bbb is tru e  just before the segment is executed

(D) If the value of bbb is f a l s e  just before the segment is executed

(E) Under all conditions______________________________________________________

Note: Correct response to 1988-5 is (C); From The 1988 Advanced Placement Examinations in 
Computer Science and their grading, College Entrance Examination Board, 1989, p. 6. 
Adapted by permission.
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1988-6
Consider the following declarations

type
In tA r r a y T y p e  -  array f 1. .Many) q£  integer ;
S tr u c tu r e T y p e  = record

X n tA rra y  : In tA r r a y T y p e  ; 
length : i n t e g e r

find ;
function S e a rc h  (S t r u c tu r e : Structureiype; Key: in te g e r )

: i n t e g e r  ;

{ Precondition: 0 < S tr u c tu r e .L e n g th  < Many }
{ Postcondition: }
{ (1) Returns i  such that 0 £ i  is S tr u c tu r e .L e n g th .  }
{ (2) If  positive i  is  returned, then )
{ S t r u c t u r e . I n tA r r a y [i ] = K ey . }
{ (3) If  0 is  returned, then Key t* Structure. I n tA r r a y [i ] }
{ for a ll  i  5 Structure. Length . }

xar
I n d e x  : i n t e g e r  ;

begin
I n d e x  := 1 ; 
with S t r u c tu r e  do 

begin
while (I n  tA r r a y  [ Index] < Key) and (In d e x  < L en g th ) da 

I n d e x  := In d e x  + 1 ; 
i f  In tArray [Index] = Key then 

S e a rc h  := In d e x  
else

S e a rc h  := 0
end

end ;
Which of the following should be added to the precondition of S e a r c h ?

(A) The value of K e y  appears at least once in s t r u c t u r e .  in tA r r a y  .

(B) The value of Key does not appear twice in structure. IntArray .
(C) S t r u c t u r e .  I n tA r r a y  is sorted smallest to largest.
(D) s truc tu re . IntArray is sorted largest to smallest.
(E) S t r u c t u r e . I n tA r r a y  is unsorted._______________________________________

Note: Correct response to 1988-6 is (C); From The 1988 Advanced Placement Examinations in
Computer Science and their grading, College Entrance Examination Board, 1989, p. 7.
Adapted by permission.
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1988-14
Consider the following program segment:

const
S i z e  = 10 ;

type
G rid T yp e  = array [1 . . S i z e ,  1. . S i z e )  char ;

function YesOrNo I G rid  : G r id T w e  :
Row,
Colm : i n t e g e r  ;
Mark : c h a r  ) : b o o le a n  ;

var
i ,  Count : i n t e g e r  ;
Off : b o o le a n  ;

beoin { YesOrNo }
Count := 0 ;
for i  := 1 to S i z e  da

i f  Grid[i, Colm] = Mark then
Count := Count + 1 ;

OK := (Count = S iz e )  ;

C ount := 0 ;
for i  := 1 to  S i z e  d2

i f  G rid[Row , i] = M ark then
C ount := C ount + 1 ;

YesOrNo := ( OK c r  (Count = S iz e )  )
end ; { YesOrNo }

Which of the following conditions on an array gof type G rid T y p e  will by itself guarantee that
YesOrNo (g, 1, 1, '*•)

will have the value true  when evaluated?

L The element in the first row and first column is • *'.
n. All elements in both diagonals are '* '.

m . All elements in the first column are

(A) Ilonly
(B) HI only
(C) I and II only

(D) II and m  only
(E) I, n, and III

Note: Correct response to 1988-14 is (B); From The 1988 Advanced Placement Examinations in
Computer Science and their grading, College Entrance Examination Board, 1989, pp. 13-
14. Adapted by permission.
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1988-23
If bis a boolean  variable, then the statement b  : = (b = fa lse )  has what effect?

(A) It causes a compile-time error message

(B) It causes a run-time error message

(C) It causes b  to have value f a l s e  regardless of its value just before the statement was 
executed

(D) It always changes the value of b

(E) It changes the value of b  if and only if 2? had value tru e  just before the statement was 
executed

Note: Correct response to 1988-23 is (D); From The 1988 Advanced Placement Examinations in 
Computer Science and their grading, College Entrance Examination Board, 1989, p. 19. 
Adapted by permission.

1988-44
Consider the partially completed program below.

R o o t := 0 ;
L im  := n 
w h ile  BBB d2

{ Invariant: (R o o t)^  ^  n  < (Lim  + 1 )  ̂ } 
beain

< code to increment R o o t or decrement Lim , >
< leaving Invariant true >

end

With which of the following should bbb be replaced in order for the loop above to compute an 
in te g e r  approximation of the square root of non-negative n?

(A) L im  <> R o o t

(B) L im  = Root

(C) Root * Root <> n

(D) Lim  * L im  <> n

(E) Lim  ♦ L im  = Root * R oot____________________________________________
Note: Correct response to 1988-44 is (A); From The 1988Advanced Placement Examinations in

Computer Science and their grading. College Entrance Examination Board, 1989, p. 32.
Adapted by permission.
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1992A-12
The code

i f  n = 1 then 
k  := k  -  1 

e lse
i f  n = 2 then 

k  := k  -  2 ; 

is rewritten in the form
i f  <condition> then

<assignment statement> ;

where <condition> and <assignment statem ent> are chosen so that the rewritten code 
performs the same task as the original code. Assume that both n and kare in te g e r  variables.

Which of the following could be used as <condition>?

1 (n = 1) c r  (n = 2) 

n. (n = 1) and (n = 2) 

m. (n >= 1) and (n <= 2)

(A) I only

(B) II only

(C) in only

(D) I and IQ

(E) n  and HI________________________________________________________________

Note: Correct response to 1992A-12 is (D); From The 1992 Advanced Placement Examinations 
in Computer Science and their grading, College Entrance Examination Board, 1993, p. 14. 
Adapted by permission.
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1992A-24
This item concerns a Pascal function named M atch  that is indicated by the following type 
declarations and function header

type XntArr = a r r a v t l .  .511 of integer ; 
function M a tc h (a .b  : In tA r r )  : b o o le a n  :

The function compares the first 50 elements of two arrays of integers and returns the value tru e  if 
the elements in corresponding positions are equal, and returns f a l s e  otherwise.

Which of the following is code for the body of the function that fits the specification given above?

(A) i  := 1 ;
while (i <= 50) and (a[i] = Jb[i]) da 

i  := i  + 1 ;
M atch  := (i > 50)

(B) Match := f a l s e  ; 
for i  := 1 £0 50 do 

i f  a[i] = Jb[i] then 
M atch := true

(C) for i  ;= 1 to 50 do
M atch : = (a[a] = b[i])

(D) i  := 1;
while (i <= 50) and (a[i] = b [ i] ) do 

i:= i  + 1 ;
M atch  := (i = 50)

(E) i  := 1 ; 
repeat

Match := (a[i] = Jb[i)) ; 
i:=  i  + 1 

u n til not M atch

Note: Correct response to 1992A-24 is (A); From The 1992 Advanced Placement Examinations 
in Computer Science and their grading. College Entrance Examination Board, 1993, pp. 
24-25. Adapted by permission. *

1992A-26 same as 1992B-16; appears at end of Appendix G

1992A-27 same as 1992B-17; appears at end of Appendix G
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1992A-30
Consider the following code fragments, where all variables are of type integer.

F r a g m e n t ! f r a g m e n t !
x := n  ; x := n  ;
y  := x ; y  := x ;
while x > 0 do i f  x > 0 then

beain beain
y  := y  + l  ; repeat
X  := x div 2 ; y  := y  +  l ;

nnd ; x := x div 2;
un til x < 0 ;

find ;

Assume that the two fragments start with the same value for variable n. For which value(s) of n do
the two code fragments compute die same value for variable y?

I  Any value less than zero

II. The value zero

m. Any value greater than zero

(A) I only

(B) n  only

(C) HI only

(D) I and II only

(E) I, n, and m
Note: Correct response to 1992A-30 is (D); From The 1992 Advanced Placement Examinations 

in Computer Science and their grading, College Entrance Examination Board, 1993, p. 30. 
Adapted by permission.

1992A-31 same as 1992B-21; appears at end of Appendix G

1992A-32 same as 1992B-22; appears at end of Appendix G
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1992A-35
Consider the following definitions. 

const
L e n g th  = <some positive in te g e r >  ; 

tvoe
L is tT y p e  = array f 1.. Lencrth'] of i n t e g e r  ;

function State(List : L is tT y p e ;  V a lu e  : in te g e r )  : b o o le a n  ; 

var
C o u n ter  : i n t e g e r  ;
F la g  : b o o le a n  ; 

beain
F la g  := f a l s e  ; 
for Counter := 1 to L e n g th  do 

beain
F la g  := (List[Counter] = V alue) ; 

end ;
S t a t e  := F la g  ; 

end ;

Under which of the following conditions must the function above return tru e ?

(A ) Under all conditions

(B) Under the condition that Value = L i s t  [L e n g th ]

(C) Under the condition that Value = L ist[i] for some i  such that 1 £  i  £  L e n g th

(D) Under the condition that V alue  & L i s t [ i ]  for all i  such that 1 £  i  £  L e n g th

(E) Under no conditions____________________ ___

Note: Correct response to 1992A-35 is (B); From The 1992 Advanced Placement Examinations 
in Computer Science and their grading, College Entrance Examination Board, 1993, p. 34. 
Adapted by permission.
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1992B-16 sam e as 1 9 9 2 A -2 6 ; appears at end o f A p pen d ix  G  

1992B-17 sam e as 1 9 9 2 A -2 7 ; appears at end o f  A ppend ix  G  

1992B-18 sam e as 1 9 9 2 A -3 1 ; appears at end o f  A ppend ix  G  

1992B-21 sam e as 1 9 9 2 A -3 2 ; appears a t end o f  A ppend ix  G

1992B-25&26
These questions concern the definition o f two new b o o le a n  operators, “conditional and” and 
“conditional or," denoted cand and cor, respectively._____

Given b o o le a n  expressions F i r s t  and second, the cand operator is defined as follows.

/  S ec o n d  i f  F i r s t  = tru e
F i r s t  cand S eco n d  = <

\  f a l s e  i f  F i r s t  = f a l s e  (and in  th is  case,
S econd  is  not evaluated)

In  which o f the following fragments could the use o f cand in place o f and prevent run-time errors 
that might otherwise occur?

I. w h ile  (N ode <> n i l ) and (Node'". Datum < NewDatum) do 

beain

N ode : = N o d e ''.N e x t ; 
and ;

II. i f  (L is t [ i]  mod 2 = 1 )  and (L is t [ i]  = 5) then 

beain

w ri te ln ( ' Found i t ! ' )  ; 

and ;

m . caoaan
x := 2 * x ; 

u n til (0 <= x) and (x < 5) ;

(A) I  only

(B) in  only

(C) I  and I I  only
(D) I  and m  only

(E) I,  n , and H I ___  _____  ______  ______________

item 1992B-26 given on next page
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Continuation of1992B-25&26
1992B-26
B o o le a n  operator co r is to be defined so that whenever the expression F i r s t  o r Second  
evaluates without error, the expression F ir s t  cor Second also evaluates without error, and 
furthermore, so that F i r s t  ox. S e c o n d  — F i r s t  cor Second . In some cases, evaluating 
F i r s t  sc  S e c o n d  will cause a run-time error, while F i r s t  c o r  S ec o n d  evaluates without error. 
Of the following, which is the best definition of the cor operator?

/ F i r s t  i f  Second  = f a l s e

(A ) F i r s t  cor Seco n d  = <
\  f a l s e  i f  S econd  = t r u e  (and in  th is  case,

F i r s t  is  not evaluated)

/  F i r s t  i f  S econd  = tru e

(B) F i r s t  cor S eco n d  = <
\  tru e  i f  Second  = f a l s e  (and in  th is  case,

F irs t is  not evaluated)

/ S econd  i f  F i r s t  = f a l s e

(C) F i r s t  cor S eco n d  = <

\  tru e  i f  F i r s t  = t r u e  (and in  th is  case,
Seco n d  is  not evaluated)

/ Second  i f  F i r s t  = f a l s e

(D ) F i r s t  cor Second  = <
\  f a l s e  i f  F i r s t  = tru e  (and in  th is  case,

S eco n d  is  not evaluated)

/  Second  i f  F i r s t  = tru e

(E) F i r s t  cor Seco n d  = <
\  tru e  i f  F i r s t  = f a l s e  (and in  th is  case,

S eco n d  is  not evaluated)

Note: Correct responses to 1992B-25 and 1992B-26 are (A) and (C), respectively; From The
1992 Advanced Placement Examinations in Computer Science and their grading, College 
Entrance Examination Board, 1993, p. 68. Adapted by permission.
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1992B-27
Assume that the following declarations have been made.

const
MaxNum = <some positive integer> ;

L.VPS

L is tT y p e  = array f2 ..MaxNum} of b o o le a n  ; 

var
List : L is tT y p e  ;

Consider the following code segment.
for i  := 2 to MaxNum do 

beain
L ist[i] := true ; 

find ;
for i := 2 to MaxNum do 

beain
for j  := 1 to (MaxNum div i ) da 

beain
L is tf i * j ]  : = nat(L ist[i * j ] ) ; 

and ;
and ;

For i  in the range 2 .. MaxNum, which of the following characterizes the entries of L i s t  that will 
have value t ru e  after the segment above has executed?

(A) L i s t t i ]  = tru e  for no values of i.

(B) L is ttil  = true for all values of i.
(C) L is tti]  = true for all values of i  that are even.

(D) L i s t t i ]  = t ru e  for all values of i  that are prime.

(E) L is tti]  = true for all values of i  that are perfect squares.________________________

Note: Correct response to 1992B-27 is (E); From The 1992 Advanced Placement Examinations 
in Computer Science and their grading. College Entrance Examination Board, 1993, p. 69. 
Adapted by permission.
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1992B-31&32
are based on the following code framework.

var
n , i , v  : in te g e r  ; 

beain
read(n) ; 
i  := 1 j 
v := 1 ;
while <condition> do 

beain
<body> ;

end ; 
w rite ln(v) ; 

end ;

The placeholders <condition> and <body> are to be replaced with code so that whenever the 
value read into variable n is positive, the value output is n ! (n factorial). Further, the expression 
v = i ! is to be maintained as an invariant of the while loop._____
Which of the following choices for <body> maintains v  = i ! as the loop invariant?

(A) i := i + 1 ? V := V * i
(B) v  v * i ; i := i + 1
(C) i  := i + 1 ; V := n * i
(D) v  := n * i ; i := i 1
(E) i  := i * <i - 1) ; V := v + 1

1992B-32
Assume that <body> has been replaced with code that maintains v = i ! as the loop invariant. 
Which of the following choices for <condition> ensures that if the loop terminates, the value nl
is output?

(A) i = n
(B) i <> n
(C) i - V

(D) i <> V

<E) i = V *

Note: Correct responses to 1992B-31 and 1992B-32 are (A) and (B), respectively; From The
1992 Advanced Placement Examinations in Computer Science and their grading, College 
Entrance Examination Board, 1993, p. 73. Adapted by permission.
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1992A-26
and

1992B-16

Under which of the following conditions must the following b o o le a n  expression have the value 
tru e?

H i  <= n) and (a[i]  = 0)) or {( i >= n) and (a [ i  - 1] =0))

(A) (i <= n) ox. ( i  >= n)

(B) <a[i] = 0) and (a [ i -  1] = 0)

(C) i n n

(D) i  < n

(E) i  > n____________________________________________________________
Note: Correct response to 1992A-26/1992B-16 is (B); From The 1992 Advanced Placement 

Examinations in Computer Science and their grading. College Entrance Examination 
Board, 1993, pp. 27 & 63. Adapted by permission.

1992A-27
and

1992B-17

Evaluation of the boolean  expression
( ( i  <= n) and (a[i] = 0)) c r  ( ( i  >= n) and (a[ i  - 1) = 0))

is guaranteed to cause a run-time error under which of the following conditions?

(A) i  < 0

(B) Neither a [i]  nor a [ i  -  1] has the value zero.

(C) Array a is of size n.

(D) Array a is of size 2.

(E) None of the above_____________________________________________________

Note: Correct response to 1992A-27/1992B-17 is (E); From The 1992 Advanced Placement
Examinations in Computer Science and their grading, College Entrance Examination
Board, 1993, pp. 27 & 63. Adapted by permission.
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1992A-31
and

1992B-18

Consider the following declarations.
type

L i s t T w e  = record
I te m s  : array f1 ..M axLenath1 of in te g e r ;

N um ltem s : i n t e g e r  ;

e n d  j .

procedure F in d  ( L i s t  s L is tT v n e  : Num : i n t e a e r  :

var Found : b o o le a n  ; var Loc : i n t e g e r ) ;
(precondition: 0 £ L is t.N u m lte m s  £ M axLength)
beain

Found := f a l s e  ;
Loc := 0;
while not Found and (Loc < List.Numltems) do

beain
Loc := Loc + 1 ;
i f  L ist. Items [Loc] = Mini then

Found := true ;
£lld ;

£nd ;

Which of the following is a correct postcondition for procedure Find?

(A) Found
(B) Found and (Loc >= L is t.N u m lte m s)

(C) ( L i s t . I te m s lL o c )  = Num) cx (Loc = L is t.N u m lte m s)

(D) L o c  = L is t.N u m lte m s

(E) not Found and (Loc < L is t.N u m lte m s)

Note: Correct response to 1992A-31/1992B-18 is (C); From The 1992 Advanced Placement
Examinations in Computer Science and their grading, College Entrance Examination
Board, 1993, pp. 31 & 64. Adapted by permission.
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1992A-32 
and 

1992B-21

The b o o le a n  expression
(Num > Max) or not (Max < Num)

can be simplified to

(A) Max <> Nam

(B) Max = Num

(C) (Num < Max) and not (Max < Num)

(D) f a l s e

(E) true__________________________________________________________
Note: Correct response to 1992A-32/1992B-21 is (E); From The 1992 Advanced Placement 

Examinations in Computer Science and their grading, College Entrance Examination 
Board, 1993, pp. 32 & 66. Adapted by permission.



www.manaraa.com

Appendix H Reliability of Individual Judges

Appendix H provides an overview of the reliability of individual judges 

during the final phase of the content analysis procedure. Figures H.l through H.4 

present graphs that show the reliability of each judge on the 1984, 1988, 1992 

version A, and 1992 version AB examination packets respectively. Judge 

numbering across the examinations is consistent, that is, judge number x  on the 

1984 examination is also judge number x  on the 1988 and 1992 examinations.

Individual judge reliability indicates the extent to which an individual 

judge was the source of unreliable data (Krippendorff, 1980). Each graph shows 

the overall reliability values under the liberal and conservative partitioning 

algorithms (graphed as horizontal lines), individual judge reliability under the 

liberal algorithm (graphed as a black diamond), and individual judge reliability 

under the conservative algorithm (graphed as a white circle). In this study, 

individual judge reliability was calculated based on the test-test condition by 

which the ratings were generated. In a test-test situation, the reliability of 

particular individual is calculated by comparing the outcome of that individual’s 

ratings of the items to the pooled ratings by all of the other judges. (This is in 

contrast to a test-standard condition, where a judge’s rating performance during a 

training session would be compared to a pre-existing standard. The test-standard 

condition could be used for the purpose of identifying highly capable judges and 

for eliminating inconsistent judges, important issues when accuracy is a key goal 

of the content analysis procedure.)
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Figure H .l, which reports judge reliability on the 1984 examination, 

includes two judges, #24 and #26, whose agreement coefficients differed 

drastically from those of the other judges. Under the conservative partitioning 

algorithm, these two judges’ reliability was -.30  to -.40, indicating a fairly 

systematic deviation from the classifications assigned by the other 36 judges. In 

1988 (see Figure H.2), the reliability of judge #26 was still rather different than 

the reliability of the remaining judges, particularly under the conservative 

partitioning algorithm. On the 1992 examinations (see Figures H.3 and H.4), the 

reliability of judge #26 was comparatively low on the A version but nearer that of 

other judges on the AB version.

In 1984 as well as in other years, several other judges consistently had 

lower reliability than the others (although they differed less radically than the 

judges in the previous paragraph). For example, the reliability of judge #9 

hovered at about .25 for the liberal partitioning algorithm on the 1984, 1988, and 

1992A examinations and increased to about .40 for the 1992AB examination. 

Individual reliability forjudge #34 was about the same as the individual reliability 

of the other judges in 1984 and 1988 but, for both versions of the 1992 

examination, was lowest under the liberal partitioning algorithm and among the 

lowest under the conservative partitioning algorithm.
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Reliability of judge compared to rest: — " •  liberal algorithm
— O------ conservative algorithm

Overall reliability: -
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judge number (number of judges = 38)

Figure H. 1 Comparison of Agreement Coefficients of Individual Judges on 
Examination Packet for 1984 under Liberal and Conservative Partitioning 
Algorithms
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Reliability of judge compared to rest: —— ♦  * liberal algorithm
— conservative algorillmi

Overall reliability: -
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judge number (number of judges = 36)

Note: Judges #7 and #13 did not complete the content analysis 
procedure for this examination.

Figure H.2 Comparison of Agreement Coefficients of Individual Judges
on Examination Packet for 1988 under Liberal and Conservative
Partitioning Algorithms
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Reliability of judge compared to rest:

Overall reliability:
----- -------- conservative algorithm
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judge number (number of judges = 38)

Figure H.3 Comparison of Agreement Coefficients of Individual Judges
on Examination Packet for Version A of 1992 Examination under Liberal
and Conservative Partitioning Algorithms
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Reliability of judge compared to rest: ♦  liberal algorithm
1-0 conservative algorithm

Overall reliability:------ — liberal algorithm
   —  conservative algorithm

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

judge number (number ofjudges = 38)

Figure H.4 Comparison of Agreement Coefficients of Individual Judges
on Examination Packet for Version AB of 1992 Examination under
Liberal and Conservative Partitioning Algorithms
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Appendix I Rating Comparison for Duplicate Items on the A and 
AB Versions of the 1992 APCS Examination

Appendix I compares the judging results for the IS items that appeared on 

both the A and AB versions of the 1992 APCS examination. The results for the 

duplicate items are considered in terms of the paired ratings from each judge for 

the A and AB versions of the examination packets. A rating pair is expressed as 

the pair of categories (p,;/ , qy), where p;/ is the rating given by judge i to duplicate 

item j  on the one version of the examination and qy is the rating given by judge i 

to duplicate item j  on the other version of the examination. The item numbering 

corresponds to that given in Table 4.9. In doing the content analysis, the judge 

was free to complete the examination packets in any order. As a result, each 

rating pair is unordered with respect to the two versions of the examination. 

Instead, differences in ratings will be ordered by the categories ‘main concept’, 

‘vital subconcept’, ‘trivial subconcept’, and ‘not used’ without regard to the 

version for which the rating was given.

For every rating pair, either 

Pij ~ Qij (the judge gave the same rating to the item on both versions of the 

examination), or

Pij & q\j (the judge gave different ratings to the item on the two versions of the 

examination).

Tables 1.1 and 1.2 are 15X2 tables, with one row for each duplicate item. 

Each entry in Table 1.1 is the number of judges for whom p;/ -  qy, while each
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entry in Table 1.2 is the number of judges for whom pij A  qy. (For both Table 1.1 

and Table 1.2, he sum of the row marginals is 15, the number of duplicate items.)

Tables 1.3 and 1.4 are 38X2 tables, with one row for each individual judge. 

Each entry in Table 1.3 shows the number of items for which py = qy , while each 

entry in Table 1.4 shows the numbers of items for which py A  qy. (For both Table 

1.3 and Table 1.4, the sum of the row marginals in is 38, the number of judges who 

rated the items.)

In all of the tables, the column marginals for the consistently-rated items 

are much higher than the column marginals for the inconsistently-rated items. 

(The consistently-rated items are those in Tables 1.1 and 1.3, where py  = qy\ the 

inconsistently-rated items are those in Tables 1.2 and 1.4, where p y  A  qy.) In 

considering the all ratings pairs with py A qy, four classes of mismatches emerge:

• The rating pair was either (‘main concept’, ‘vital subconcept’) or (‘trivial 

subconcept’, ‘not used’). Since these combinations did not affect the 

pooling of the categories into the dichotomous scale of not strongly 

related and strongly related, they did not affect the outcome.

• The rating pair was (‘vital subconcept’, ‘trivial subconcept’). This 

combination straddled the dividing line between the dichotomous 

categories not strongly related and strongly related, so complicated the 

process of simplifying the data.

• The rating pair was either ( ‘vital subconcept’, ‘not used’) or ( ‘main 

concept’, ‘trivial subconcept’). This combination was a more extreme 

version of the second class of mismatch, since these combinations could
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be considered to have a greater “distance” between them, thus making the 

process of simplifying the data more complicated.

• The rating pair was (‘main concept’, ‘not used’). Since this pairing 

represents a complete change of opinion, this rating mismatch is the most 

troublesome.

In the final content analysis results, 76% of the rating pairs were 

consistent. Of the remaining 24% of the ratings pairs, 53% fell into the first class 

of rating mismatch, 21% fell into the second class of rating mismatch, 22% fell 

into the third class of rating mismatch, and only 4% fell into the fourth class of 

rating mismatch. (These figures represent 13%, 5%, 5%, and 1% of the total 

number of ratings pairs respectively.)
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Table 1.1 Number of Judges Giving Same Rating to Duplicate Items in the 
Content Analysis of the A and AB Versions of the 1992 APCS Examination

rating on A /AB version o f 1992 examination
item numbers main /  main vs /  vy triv /  triv nu /  nu totals:

92A-02 / 92B-02 0 3 11 22 36
92A-05 / 92B-05 2 6 16 5 29
92A-07 / 92B-07 0 1 2 35 38
92A-08 /  92B-04 8 11 6 2 27
92A-09 / 92B-09 0 10 18 1 29
92A-10/92B-10 0 12 17 2 31
92A-16/92B-16 10 0 0 0 10
92A-17/92B-17 1 1 0 0 2
92A-20 / 92B-06 9 12 7 0 28
92A-28 /  92B-28 1 1 5 26 33
92A-29 /  92B-29 2 10 15 5 32
92A-31 /92B-18 25 7 0 0 32
92A-32 / 92B-21 38 0 0 0 38
92A-37 / 92B-37 0 1 5 28 34
92A-38 / 92B-38 0 1 5 28 34

totals: 96 76 107 154 433

Note: main is ‘main concept’; vs is ‘vital subconcept’;
triv is ‘trivial subconcept'; nu is ‘not used’
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Table 1.2 Number of Judges Giving Different Ratings to Duplicate Items in the 
Content Analysis of the A and AB Versions of the 1992 APCS Examination 

 rating on A /AB version o f1992 examination_________
item numbers m ain/vs triv/nu vs/triv main/triv vs/n u main/nu totals:

92A-02 / 92B-02 0 1 1 0 0 0 2
92A-05 / 92B-05 2 5 1 0 1 0 9
92A-07 / 92B-07 0 0 0 0 0 0 0
92A-08 / 92B-04 7 2 2 0 0 0 11
92A-09 / 92B-09 1 3 4 0 1 0 9
92A-10/92B-10 0 3 2 0 2 0 7
92A-16/92B-16 17 0 0 8 0 3 28
92A-17/92B-17 14 1 5 14 0 2 36
92A-20 / 92B-06 3 1 5 1 0 0 10
92A-28 / 92B-28 0 3 2 0 0 0 5
92A-29 / 92B-29 0 1 4 0 1 0 6
92A-31 /92B-18 4 0 1 0 0 1 6
92A-32 / 92B-21 0 0 0 0 0 0 0
92A-37 / 92B-37 0 2 1 0 1 0 4
92A-38 / 92B-38 0 2 1 0 1 0 4

totals: 48 24 29 23 7 6 137
Note: main is ‘main concept’; v j  is ‘vital subconcept';

triv is ‘trivial subconcept’; nu is ‘not used’
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Table 1.3 Number of Duplicate Items Given Same Rating in the Content Analysis 
of the A and AB Versions of the 1992 APCS Examination

rating on A /AB version o f1992 examination
main /  main Vi /  Vi triv /  triv nu /  nu totals:

Judge #1 5 0 4 5 14
Judge #2 1 1 2 3 7
Judge #3 1 3 0 7 11
Judge #4 2 4 2 5 13
Judge #5 3 2 0 5 10
Judge #6 1 2 7 1 11
Judge #7 2 1 0 5 8
Judge #8 1 1 6 5 13
Judge #9 4 5 0 2 11

Judge #10 2 0 3 4 9
Judge#11 2 0 0 5 7
Judge#12 1 1 3 7 12
Judge#13 5 1 3 0 9
Judge #14 2 1 3 6 12
Judge#15 2 2 4 5 13
Judge#16 4 0 3 6 13
Judge#17 6 3 0 5 14
Judge #18 2 0 3 6 11
Judge #19 1 2 3 6 12
Judge #20 2 1 4 4 11
Judge #21 2 1 4 4 11
Judge #22 3 5 1 4 13
Judge #23 4 4 3 3 14
Judge #24 4 1 3 1 9
Judge #25 7 3 3 1 14
Judge #26 1 8 3 1 13
Judge #27 1 3 0 5 9
Judge #28 1 9 0 4 14
Judge #29 1 3 2 4 10
Judge #30 2 0 6 3 11
Judge #31 2 1 7 3 13
Judge #32 2 0 6 5 13
Judge #33 3 4 2 5 14

Table continued on following page
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Continuation of Table 1.3.

rating on A /AB version o f1992 examination
main /  main vs /  vs triv /  triv nu /  nu totals:

Judge #34 3 1 1 2 7
Judge #35 4 2 1 5 12
Judge #36 2 0 6 2 10
Judge #37 3 1 4 4 12
Judge #38 2 0 5 6 13

totals: 98 76 107 154 433

Note: man is ‘main concept’; vs is ‘vital subconcept’; 
triv is ‘trivial subconcept*; nu is ‘not used’

Table 1.4 Number of Duplicate Items Given Different Ratings in the Content 
Analysis of the A and AB Versions of the 1992 APCS Examination

rating on A /AB version o f1992 examination_________
main /v s triv/nu vs/triv main /tr iv vs/nu main/nu totals:

Judge #1 0 0 0 1 0 0 1
Judge #2 2 4 1 1 0 0 8
Judge #3 1 0 0 0 1 2 4
Judge #4 2 0 0 0 0 0 2
Judge #5 3 0 2 0 0 0 5
Judge #6 1 1 2 0 0 0 4
Judge #7 2 2 1 0 1 1 7
Judge #8 0 0 1 1 0 0 2
Judge #9 2 2 0 0 0 0 4
Judge #10 1 2 1 2 0 0 6
Judge #11 0 6 1 1 0 0 8
Judge #12 1 0 1 1 0 0 3
Judge #13 2 0 4 0 0 0 6
Judge #14 2 0 0 1 0 0 3
Judge #15 0 0 0 2 0 0 2
Judge #16 0 0 0 2 0 0 2
Judge #17 1 0 0 0 0 0 1
Judge #18 2 1 0 1 0 0 4
Judge #19 0 0 1 2 0 0 3

Table continued on following page
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Continuation o f Table 1.4.

rating on A /AB version o f 1992 examination
m ain/vs triv/nu vs/triv main /triv vs/n u m ain /m totals:

Judge #20 1 1 2 0 0 0 4
Judge #21 1 0 0 1 2 0 4
Judge #22 2 0 0 0 0 0 2
Judge #23 1 0 0 0 0 0 J
Judge #24 3 0 2 0 0 1 6
Judge #25 1 0 0 0 0 0 J
Judge #26 1 0 0 1 0 0 2
Judge #27 4 1 1 0 0 0 6
Judge #28 1 0 0 0 0 0 1
Judge #29 2 1 2 0 0 0 5
Judge #30 3 0 1 0 0 0 4
Judge #31 1 0 0 1 0 0 2
Judge #32 1 0 0 1 0 0 2
Judge #33 1 0 0 0 0 0 1
Judge #34 2 2 1 0 3 0 8
Judge #35 1 0 1 1 0 0 3
Judge #36 0 0 3 2 0 0 5
Judge #37 0 1 1 0 0 1 3
Judge #38 0 0 0 1 0 1 2

totals: 45 24 29 24 7 6 137
Note: main is 'main concept’; vs is ‘vital subconcept’;

triv is ‘trivial subconcept’; nu is ‘not used'
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Glossary

abstract datatype: A datatype described only at the logical level, without details 
of implementation.

ACM: The Association for Computing Machinery, one of the key professional 
organizations in the field of computer science. Provides a variety of 
forums for the dissemination of technical information and discussions of 
issues important to the computing profession.

A PC S: Advanced Placement Computer Science, one of the subject-area 
examinations offered annually by ETS to high school students.

ASL: The Association for Symbolic Logic, a worldwide organization dedicated 
to the study of logic.

assertion: A predicate within the context of a program. The predicate asserts 
what must true about the program state at that point.

boolean: An abstract datatype that is based on the set of values {true, false}1. 
The operations are the logical connectives.

boolean expression: An expression constructed from boolean constants, boolean 
variables, boolean operations, and operations from other domains whose 
result type is boolean (e.g., 9 + 3 = 12,7 < 4, ax + by & c, ‘xy’ < ’xyz’) .8

classical logic: A branch of logic that assumes that the values true and false form 
a dichotomy, so that anything that is not true is false and vice versa.

constant: A computational object associated with a particular datatype; has an 
unchanging and unchangeable value from the datatype domain.

content analysis: A research technique for making replicable and valid 
inferences from data to their context.

data object: A variable or constant; defined by means of a datatype.

data structure: Representation of a data object within a computer program.

1 Because these values are part of a set, the values of type boolean considered in “pure" form
are unoidered. However, some programming languages impose an artificial ordering on these
values. In Pascal, for example, boolean is implicitly defined by the declaration

ty p e  b o o le a n  = ( f a l s e ,  t r u e )
which defines f a l s e  < t r u e  to be valid.

8 Note that, while the expression 7 < 4 evaluates to “false”, it is still a valid boolean expression.
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data type: See datatype.

datatype: The formal description of the characteristics of a group of related data 
objects; includes a domain (or set of distinct values), a collection of 
relationships among the values of the domain, and a set of operations on 
the values.9

ETS: Educational Testing Service, the organization that provides the operational 
services for the College Entrance Examination Board. Responsible for the 
Advanced Placement Program and the Graduate Record Examination 
Program, as well as other programs.

iden tifier: A sequence of one or more digits and letters; the name of a data 
object, datatype, proposition, or predicate.

IEEE: The Institute of Electronics and Electrical Engineers; has as its purpose to 
advance the theory and practice of computer science and engineering and 
to promote the exchange of technical information.

ISO: International Standards Organisation.

logic: A science that deals with the rules and criteria of valid inference and 
demonstration; the science of the formal principles of reasoning.

logical connectives: Operators defined over values o f type boolean; include 
negation (“not” or -i), conjunction (“and” or a ), disjunction (“or” or v), 
implication (“implies” or =>), and equality (“equals” or = ; also 
“equavales” or s ) .

LID: Language-Independent Datatype, the topic of an ISO standard (1994).

MAA: Mathematical Association of America.

9 Whether datatype is one word or two is an unresolved issue. B. Meeks has argued that the 
one-word spelling conveys that this is a “reserved word" denoting a specific concept, not to be 
confused with other notions of “types" of data. The translation into French of “data type” was 
established as “type des donne’s", literally the “type of the data", which could be interpreted 
in many ways, whereas the translation of “datatype" would be “type de donne’s’’ — the “type 
of data”, which implied reference to some specific system of categories. A quick survey of 
programming language standards revealed that only Fortran refers to “data type" and only 
Prolog uses “datatype". COBOL refers to “classes of data". The Ada, Pascal, C/C++, and 
SmallTalk standards refer only to “type". (E. Barkmeyer, personal communication, April 12, 
1994)
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mathematical logic: A branch of logic that uses a formalized system consisting 
of primitive symbols, combinations of these symbols, axioms, and rules of 
inference. Also called symbolic logic, logistic.

operator: A mathematical or logical symbol denoting an operation to be 
performed.

postcondition: The assertion that is the second half of the specification of a 
sequential program or statement; specifies that which must hold after the 
program or statement is executed.

p reco n d itio n : The assertion that is the first half of the specification of a 
sequential program or statement; specifies that which must hold before the 
program or statement is executed.

predicate: A formula of the predicate calculus.

predicate calculus: The branch of mathematical logic that uses symbols for 
quantifiers and for arguments and predicates of propositions as well as for 
unanalyzed propositions and logical connectives; also called functional 
calculus.

program  space: The set of data objects that are defined at a particular time 
during execution of a computer program.

program  state: The values of the data objects in the program space at a 
particular time during execution of a computer program.

proposition: An expression in language or signs of something that can be 
believed, doubted, or denied or is either true or false. A symbolic 
proposition is formed according to the following rules: (1) true and false 
are propositions; (2) an identifier is a proposition; (3) if  b  is a
proposition, then so is —ib; and (4) if b and c are propositions, then so are
(a a  b ), (a v  b ), (a => b), and (a s b ) .

propositional calculus: The branch of mathematical logic that uses symbols for 
unanalyzed propositions and logical connectives only; also called 
sentential calculus.

PLT: Propositional Logic Test.

specification: A formal description of the desired behavior of a computer 
program or other code fragment. In sequential programs, the specification 
consists of a pair of assertions, the precondition and the postcondition.
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two-valued logic: Propositional logic specifically restricted to a domain of two 
values.

type: A synonym for “datatype” when used in the context of describing a data 
object.

variable: A computational object associated with a particular datatype; has a 
specific value from the datatype domain at any given time and may have 
different values of the same domain at different times.

Credits:

• The data-related definitions were influenced by Dale & Walker (in press).

• The calculus and boolean definitions have been influenced by Gries (1981), 
ISO (1994), and Tucker, Bradley, Cupper, & Gamick (1992).

• The logic definitions have been influenced by Cumbee (1993) & Webster 
(1972).

• The definition of content analysis is based on Krippendorff (1980, p. 21).

• The definition of operator is suggested by Webster (1972).
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